Conservation Agriculture in Organic Farming
Motivations of European Farmers and Diversity of Practices

Marion Casagrande
Joséphine Peigné
ISARA-Lyon
Outline of the presentation

• Context
• Material and methods
• Results
 – Farmers’ motivations and problems
 – Diversity of practices in Europe
• Conclusion
Context of TILMAN-Org Project

• Conservation agriculture and organic farming

Minimum soil disturbance
Permanent soil cover
Diversified crop rotation

• Constraints of application
• TILMAN-ORG project
Context of TILMAN Survey

• Survey: Current farmers’ practices in Europe?

Green manure (GM)

Reduced tillage (RT)
No tillage (NT)

• Objectives of the survey
 – Motivations and problems
 – Diversity of practices
 – Farmers’ profiles
Material and methods
Farmers’ questionnaires

- List of 12 possible motivations and problems for each technique
- Lickert scale ranging from 1 to 5

Example: motivation for applying GM « improving general biodiversity »

<table>
<thead>
<tr>
<th>Not at all important</th>
<th>Of minor importance</th>
<th>Moderately Important</th>
<th>Very important</th>
<th>Extremely important</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

2013 Organic Producers’ Conference, Birmingham, Jan 22-23, 2013
Material and methods
Farmers’ questionnaires

- Crop management
- Statistical analysis

Farmers’ profiles of crop management

Winter crop
Spring crop

Before sowing
After harvest

PRACTICES

CORE organic II

2013 Organic Producers’ Conference, Birmingham, Jan 22-23, 2013
Results
Interviewed farmers

- 10 countries
- 159 farmers
Results

Conservation practices

% of the total interviewed farmers

- no tillage
- reduced tillage
- green manure

2013 Organic Producers' Conference, Birmingham, Jan 22-23, 2013
Results

Main motivations and problems

- **No Tillage, Reduced Tillage** and **Green Manure**

<table>
<thead>
<tr>
<th>MOTIVATIONS</th>
<th>Soil conservation</th>
<th>Environment</th>
<th>Agronomic conditions & crop management</th>
</tr>
</thead>
</table>
| Socio-economics | • Improving soil structure
 • Improving biological soil quality
 • Limiting soil erosion
 • Increasing soil OM | • Limiting N leaching
 • Improving biodiversity | • Limiting weeds, pest and diseases |
| Soil conservation | • Improving soil structure
 • Improving biological soil quality
 • Limiting soil erosion
 • Increasing soil OM | • Limiting N leaching
 • Improving biodiversity | • Limiting weeds, pest and diseases |

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>Soil conservation</th>
<th>Technical limits</th>
<th>Agronomic conditions & crop management</th>
</tr>
</thead>
</table>
| Socio-economics | • Increasing labor requirements
 • Yield stability | • Machinery | • Weed infestation and management
 • Destroying preceding crop and/or green manure |
| Soil conservation | • Improving soil structure
 • Improving biological soil quality
 • Limiting soil erosion
 • Increasing soil OM | • Machinery | • Weed infestation and management
 • Destroying preceding crop and/or green manure |
| Technical limits | • Improving soil structure
 • Improving biological soil quality
 • Limiting soil erosion
 • Increasing soil OM | • Machinery | • Weed infestation and management
 • Destroying preceding crop and/or green manure |

2013 Organic Producers' Conference, Birmingham, Jan 22-23, 2013
Results

Main motivations and problems

• 2 main types of farmers:
 – Soil conservationists
 – Agro-technically challenged
Results
Winter crops: management options

117 farmers

<table>
<thead>
<tr>
<th>Month</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug</td>
<td>Sowing</td>
</tr>
<tr>
<td>Sep</td>
<td>Destroying</td>
</tr>
<tr>
<td>Oct</td>
<td>Tillage: Stubble tillage, ploughing, non-inversion, weeding</td>
</tr>
<tr>
<td>Nov</td>
<td>Weeding</td>
</tr>
<tr>
<td>Dec</td>
<td>Harvest</td>
</tr>
<tr>
<td>Jan</td>
<td>Sowing with main crop</td>
</tr>
<tr>
<td>Feb</td>
<td>Weeding</td>
</tr>
<tr>
<td>Mar</td>
<td>Destroying</td>
</tr>
<tr>
<td>Apr</td>
<td>Left as cover crop</td>
</tr>
<tr>
<td>May</td>
<td>Sowing of new cover crop</td>
</tr>
<tr>
<td>June</td>
<td>Intercrop as cover crop</td>
</tr>
<tr>
<td>July</td>
<td></td>
</tr>
</tbody>
</table>

2013 Organic Producers' Conference, Birmingham, Jan 22-23, 2013
Results

Spring crops: management options

125 farmers

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Green manure
- Sowing
- Destroying

Tillage
- Stubble tillage, ploughing, non-inversion, weeding

Main crop
- Sowing
- Weeding
- Harvest

Intercrop
- Sowing with main crop
- Undersown
- Destroying
- Left as cover crop

Cover crop
- Intercrop as cover crop
- Sowing of new cover crop

2013 Organic Producers' Conference, Birmingham, Jan 22-23, 2013
• 2 main types of farmers:
 – Low soil cover farmers
 – Soil conservationists

Results

Farmers’ profiles for crop management

- **Spring Crops (n=14)**
 - Green manure before main crop
 - Intercrop and/or cover crop
 - Estonia, Northern farms
 - High tillage frequency with shallow management
 - Low weeding frequency before and during crop cycle

- **Winter Crops (n=55)**
 - Intercrop and cover crop
 - Soil conservationists
 - France, Austria, Switzerland
 - No or reduced tillage
 - Combined seeder
 - Leguminous intercropping

- **Spring Crops (n=55)**
 - No green manure before main crop
 - No intercrop or cover crop
 - Group 1 (n=27)
 - Other countries
 - High tillage frequency, shallow management
 - No ploughing
 - Group 2 (n=24)
 - Germany, SW Others
 - High rainfall, low rainfall
 - High weeding frequency before and during crop cycle
 - No ploughing

- **Winter Crops**
 - No ploughing
 - High tillage with shallow management
 - Low weeding frequency before and during crop cycle
 - Group 1 (n=27)
 - Other countries
 - No or reduced tillage
 - Group 2 (n=14)
 - Estonia, Spain
 - Combined seeder
 - Leguminous intercropping
 - Group 3 (n=21)
 - Other countries
 - Undersowing of intercrop

2013 Organic Producers' Conference, Birmingham, Jan 22-23, 2013
13
Conclusion and perspectives

• First overview of European practices
• Results are dependant on farm location

• Problems => challenges for further research

• Diversity of practices is inspiring for designing new cropping systems that combine CA and OF