AR0914 Generating and evaluating a novel genetic resource in wheat in diverse environments

Martin Wolfe¹, Scott Phillips¹, John Snape² and Lesley Fish²

¹Elm Farm Research Centre, Hamstead Marshall, Near Newbury, Berkshire, RG20 0HR, UK

²John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK

Breeding – a paradigm shift?

Current Status:

Modern wheat - pedigree pure lines with limited withinfield diversity at the levels of genes and genotypes.

Evolved its own administrative framework.

Future Sustainability:

The study of evolution, populations and ecosystems indicate the value of diversity – this should be integrated into wheat production.

Diverse plant communities:

- wider range of functions as the number of components increases
- niche differentiation improves exploitation of the local environment
- complementation among different components

Historical

Suneson (1956) - a new method of plant breeding:

- 1. assemble parents with diverse evolutionary origins
- 2. recombine by hybridisation
- 3. bulk the F1 progeny
- 4. prolonged natural selection of progeny in crop environments

<u>Conclusions</u> (for barley): new varieties (superior populations or pure lines) at minimum cost and maximum assurance of adaptability.

Thomas et al., 1991, report yield improvements of a composite population of wheat of 15% over the mean of the parent components.

Breeding for diversity

	Adaptation	Adaptability
Current – pure bred lines	High	Low
Composite cross populations	High	High

Selection of Parent Lines

 1 Bezostaya 2 Buchan 3 Claire 4 Deben 5 High Tiller Line 1 Bezostaya 2 Cadenza 3 Hereward 4 Maris Widgeon 5 Mercia 	High Yield Potential	High Quality Potential
6 Norman 6 Monopol 7 Option 7 Pastiche 8 Tanker 8 Renan 9 Wembley 9 Renesansa 10 Soissons 11 Spark 12 Thatcher	 1 Bezostaya 2 Buchan 3 Claire 4 Deben 5 High Tiller Line 6 Norman 7 Option 8 Tanker 	 1 Bezostaya 2 Cadenza 3 Hereward 4 Maris Widgeon 5 Mercia 6 Monopol 7 Pastiche 8 Renan 9 Renesansa 10 Soissons 11 Spark

+ 4 male sterile lines

Composite Cross Populations

High Yield Population

High Quality
Population

High Yield & Quality Population

High Yield Population + HMS High Quality
Population
+ HMS

High Yield & Quality Population + HMS

Yield Composite (Growth stage 65)

Wakelyns (organic)

Metfield (conventional)

Morley (conventional, CSS)

Expected Benefits

 Provide a unique insight into the evolution of genetically diverse wheat populations in a range of environments.

- Provide a valuable genetic resource for breeders - and for farmers
- Improve the sustainability of wheat production

