

Swedish production of organic grain legumes for food – insights from research and practice

<u>Georg Carlsson</u>, Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Alnarp, Sweden

<u>Per Modig</u>, Fagraslätt farm / Swedish Rural Economy and Agricultural Society, Kristianstad, Sweden

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Swedish production of organic grain legumes for food – a researcher's perspective

Georg Carlsson

SLU, Department of Biosystems and Technology, Alnarp

70% of Swedens agricultural land is used for animal feed production

More grain legumes could be grown in Sweden, *e.g.* pea, faba bean, *Phaseolus* beans, lupins, lentil, soybean.

Photo: Pamela Yah Konfor

<u>Protein supply</u>, comparing current meat consumption with a scenario that domestic grain legumes replace imported meat

Calculations based on data in Hallström et al. (2014). Food Policy 47, 81–90.

Protein supply, comparing current meat consumption with a scenario that domestic grain legumes replace imported meat

This replacement requires a per-capita consumption of about 110 g cooked beans, peas or lentils per day.

Photo: G. Carlsson

<u>Climate impact</u>, comparing current meat consumption with a scenario that domestic grain legumes replace imported meat

* Assuming greenhouse gas emissions corresponding to 1,3 kg CO₂-eq. per kg dry GL. Data for meat based on *Hallström et al. (2014). Food Policy 47, 81–90.*

Land use: the replacement requires about 60 000 ha for increased Swedish grain legume cultivation

Assuming average GL yield yield of 3 ton/ha, containing 26 % protein

Georg Carlsson

Increased grain legume cultivation → cropping system diversification

- Reduced need for N fertilization and pesticides in conventional production
- New opportunities for grain legume production on organic farms without animals

Photos: G. Carlsson

Yield stability in organic grain legume production

Abundant weed growth in fields with organic cultivation of lupins, faba beans and lentils (photos: G. Carlsson).

Georg Carlsson

Complementarity in grain legume-cereal intercropping enhances crop performance

Lupin/barley (photo: G. Carlsson)

Faba bean/wheat (photo: E.S. Jensen) Lentil/oat (photo: G. Carlsson)

Complementarity in grain legume-cereal intercropping enhances crop performance

Bedoussac et al. 2015. Agron. Sustain. Dev. 35, 911-935.

Organic Producers' Conference, Bristol, 2016-01-27

Georg Carlsson

Why not more intercropping?

Despite the mentioned benefits, intercropping for production of mature grains is rarely adopted by Swedish farmers

Technical challenges for cultivation and harvesting

Photos: E.S. Jensen

Focus on Intercropping in Organic Legumes (FIOL)

Ongoing research aiming to identify problems, market opportunities and technical solutions for Swedish organic grain legume production.

Participatory design and assessment of grain legume-cereal intercropping systems.

Focus group meetings linking key actors in the grain legume-based food system

Photo: G. Carlsson

Thank you for your attention!

Photo: G. Carlsson

Georg Carlsson

Additional benefits of intercropping – potential to prevent pests damages

Land use, comparing current meat consumption with the scenario that domestic grain legumes (GL) replace imported meat

* Assuming average GL production of 3 ton / ha and 26 % GL protein concentration Data for meat based on Hallström et al. (2014). Food Policy 47, 81–90.