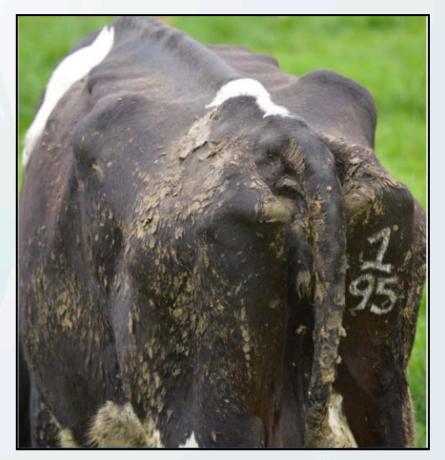

Alternative breeds and crossbreeding their role within organic and low input systems

Organic Producers Conference Conrad Ferris

27 November 2014

www.afbini.gov.uk

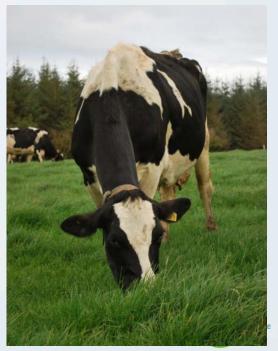
The Holstein-Friesian


- A breed with great 'type traits'
- A breed with huge potential to produce milk
- Milk yield/cow in Northern Ireland has increased from 4600 litres in 1984 to 6900 litres in today
- But does she really produce milk more efficiently?

NO!

The Holstein digests her food and uses the absorbed nutrients with the exact same efficiency as any other breed!

So where does the extra milk come from?


- Higher milk yields are due to:
 - To higher intakes
 - Burning up own body tissue reserves!!
- In selecting Holsteins that produce more and more milk, we have selected cows that produce milk by getting thin!
- Thin cows are less fertile, less healthy, and will not survive as long in the herd!
- We have created the problem...but can we solve it?

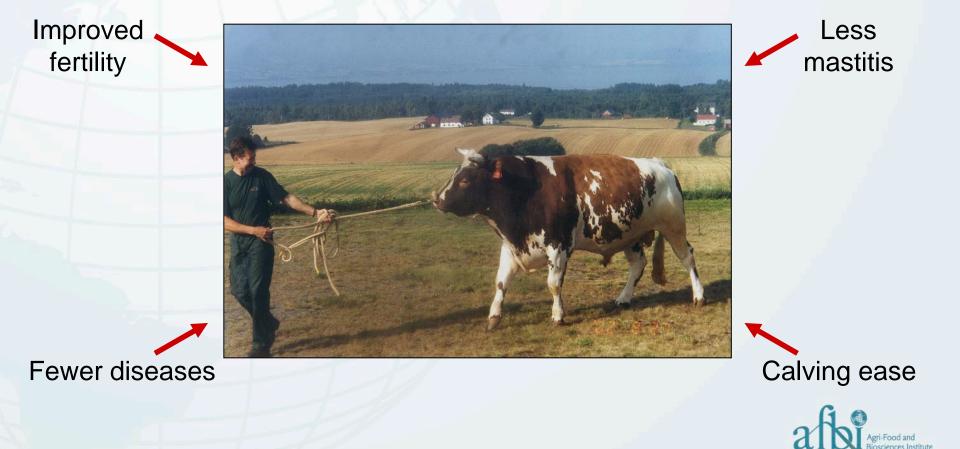
Possible solutions?

- How can we address the problem?
 - Nutritional strategies?
 - Genetic strategies
 - Alter breeding goals/selection indexes
 - Breed substitution
 - Crossbreeding

(I) Breed-substitution Comparison of Norwegian Red and Holstein Dairy cows

Breed substitution?

There are lots of alternative breeds.....but how do they compete with the Holstein in terms of performance, health, fertility, ease of management, and profitability?



The only real way to find out is in controlled research study

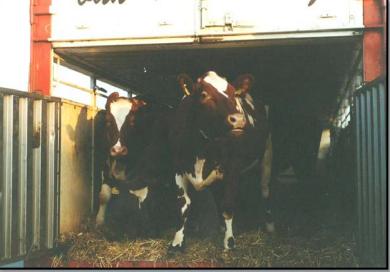
Why the Norwegian Red?

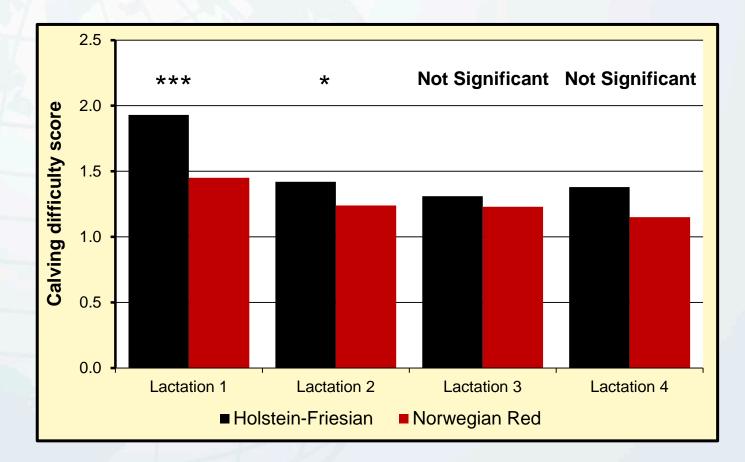
 In Scandinavia the focus has not just been on milk yield, but also on 'functional traits:

Current weighting on traits within Total Merit Index in Norway

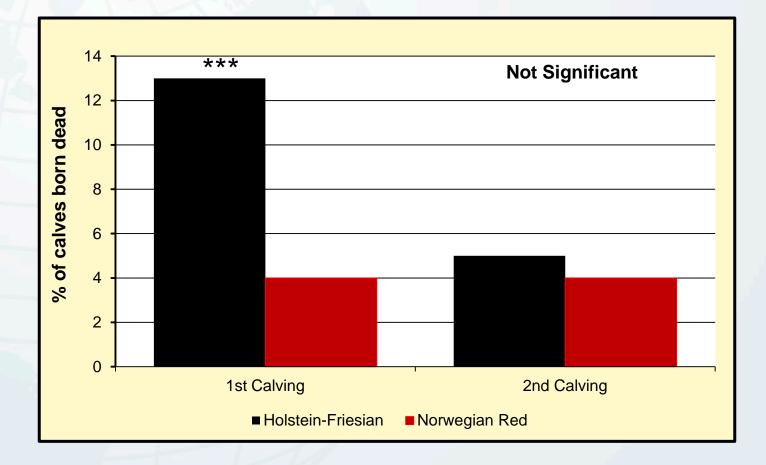
Protein yield	28
Mastitis	21
Fertility of daughters	18
Udder and teats	15
Beef	6
Legs	6
Temperament	2
Other diseases	2
Milking speed	1
Stillbirths	0,5
Calving ease	0,5

Why examine Norwegian red cows in Northern Ireland?


 But dairy systems in Norway are very different from those within Northern Ireland


Outline of research project

- On-farm research programme to complement programme at Hillsborough
- 220 Norwegian Red cattle imported from Norway (as heifers)
- Placed on 20 commercial dairy farms
- Compared with home bred Holstein-Friesian cows
- Cows monitored until start of lactation 6, or until culled


Effect of breed on calving difficulty score during lactations 1-4

1-5 scale where 1 = unassisted, 5 = caesarean section

Food and

Effect of breed on the percentage of calves born dead

Milking temperament score - % of cows that stood calmly during milking

		Holstein- Friesian	Norwegian Red
Lactation 1	48 hours	37	31
	3 weeks	91	80
Lactation 2	48 hours	82	75
	3 weeks	97	94

1 - 4 scale where 1 = stands calmly and 4 = extremely agitated – milked with difficulty

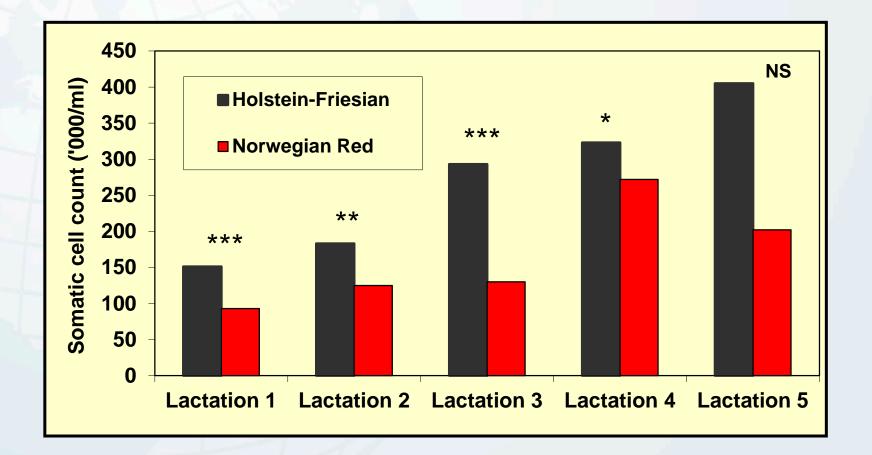
Effect of dairy cow breed on full lactation milk production (kg)

	Holstein- Friesian	Norwegian Red	% difference from the Holstein
Lactation 1	6264	5956	-5%
Lactation 2	6789	6550	-4%
Lactation 3	7415	7257	-2%
Lactation 4	7826	7506	-4%
Lactation 5	7397	7466	+1%

2

Milk composition (mean for lactations 1 - 5)

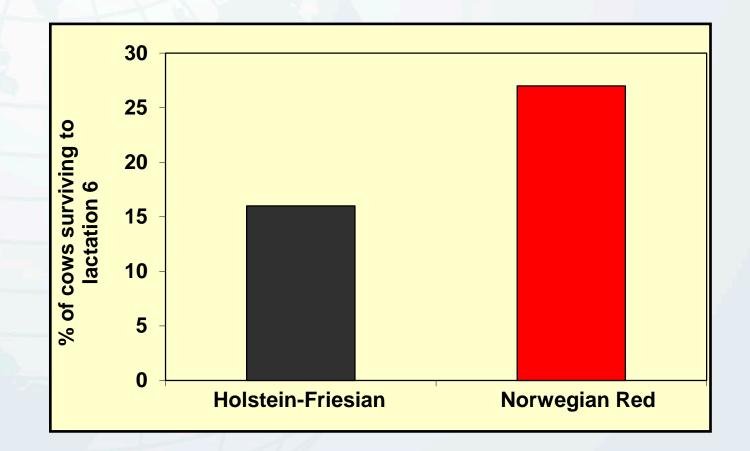
	Holstein-Friesian	Norwegian Red
Fat %	3.75	3.85
Protein %	3.24	3.32



Effect of dairy cow breed on full lactation fat+protein yield (kg)

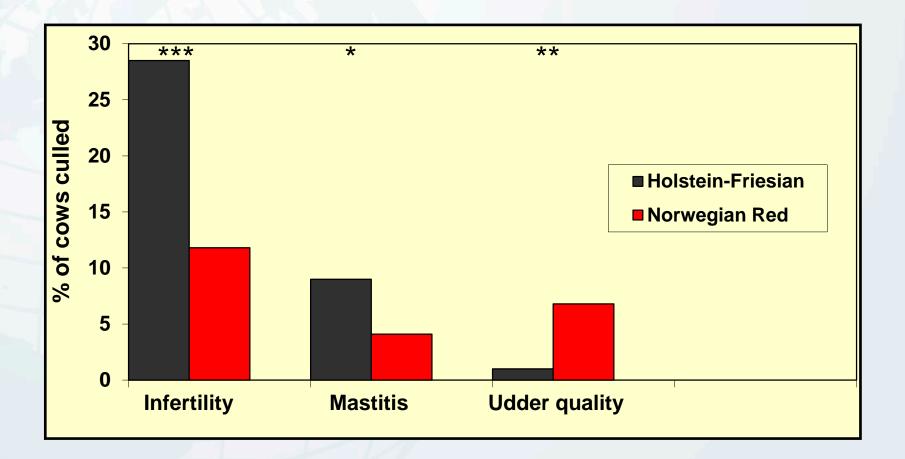
	Holstein- Friesian	Norwegian Red	% difference compared to Holsteins
Lactation 1	443	427	-4%
Lactation 2	471	464	-1%
Lactation 3	516	520	0
Lactation 4	555	543	-2%
Lactation 5	514	540	+5%

Somatic cell count during lactations 1-5 ('000/ml)



Are Norwegian cows more fertile? Conception rate to 1st AI

	Holstein- Friesian	Norwegian Red
Heifers	58%	66%
Lactation 1	41%	55%
Lactation 2	39%	60%
Lactation 3	35%	65%
Lactation 4	52%	59%



Percentage of cows surviving until the sixth lactation

Main reasons for culling cows

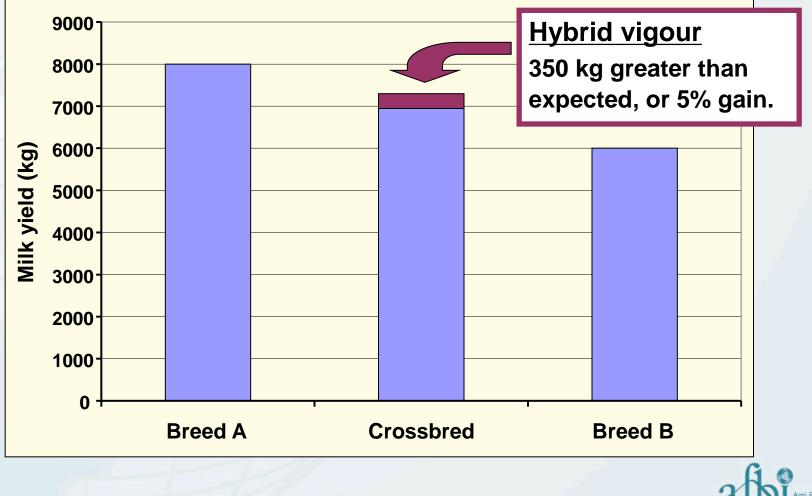
Economic comparison of Norwegian Red vs Holstein cows

	Holstein-Friesian	Norwegian Red
Milk solid (litres/cow/year)	6582	6508
Fat (%)	3.78	3.87
Protein (%)	3.25	3.33
Outputs (£/cow/year)		
Milk sold	1700	1708
Calves sold	89	104
Cull cows sold	198	164
Less replacement charge	374	309
Total outputs	1613	1668
Variable costs (£/cow/year)	763	739
Gross margin (£/cow/year)	851	929
Overhead costs (£/cow/year)	490	490
Net profit (£/cow/year)	361	439

- NR cows outperformed the Holstein cows in the traits that they had been heavily selected for
- Contrary to 'popular' believe, milk production performance of NR cows was similar to that of Holsteins
- Behaviour was an issue, but 'type' issues perhaps key limitation to uptake
- Economic analysis suggest that the NR can be as profitable, if not more so, that the Holstein: net profit £78/cow higher

(II) Crossbreeding

Evaluation of Jersey crossbred cows



Crossbreeding

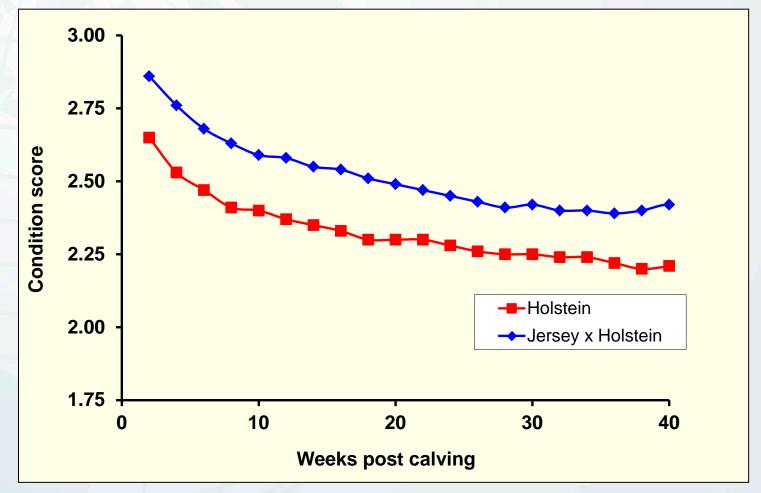
- Why consider crossbreeding?
 - 1) The introduction of desirable traits from a second breed which may be absent or occur at a low frequency in receipent breed
 - To reduce levels of inbreeding 2)
 - 3)
- Hybrid vigour: 'opposite of inbreeding depression'

What is Hybrid vigour ('heterosis')

Agri-Food and Biosciences Institute

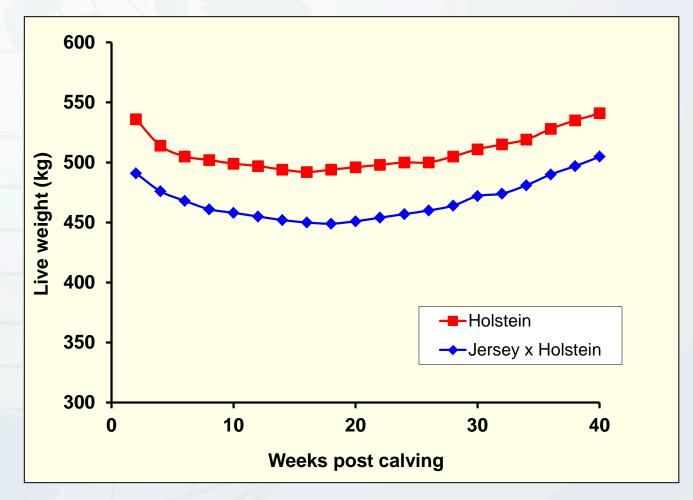
Hillsborough studies have evaluated Jersey x Holstein crossbred cows

- 3 year study
- Spring calving dairy cows
- Average concentrate input = 1.1 t/cow



Effect of cow genotype on milk production

	Hol	J x Hol
Average live weight (kg)	513	469
Food intake pre turnout (kg DM/cow/day)	14.7	14.8
Milk Yield (litres/cow/lactation)	6070	5463
Fat (%)	4.20	4.78
Protein (%)	3.30	3.59
Fat + Protein yield (kg/cow/lactation)	467	471
SCC (000/ml)	218	173



Changes in condition score during lactation

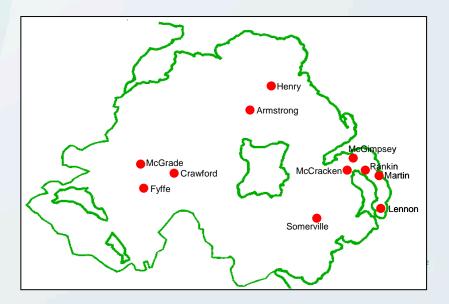
Changes in live weight during lactation

The effect of cow genotype on fertility performance

	Hol	J x Hol
Cows starting to cycle pre-day 42 (%)	78	90
Days to first observed heat	51	42
Conception to 1 st + 2 nd AI (%)	51	79
Pregnancy rate after 12 weeks of breeding (%)	65	85

Health problems

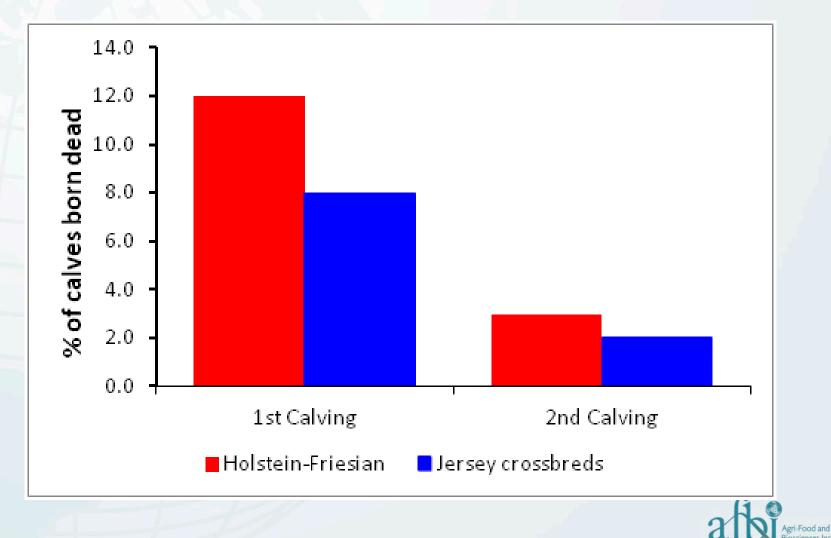
	Holstein	Jersey crossbred
(% of cows with at least one case)		
Mastitis	29	16
Lameness	19	11
Displaced abomasum	7	0


Performance of Jersey crossbred cows on Northern Ireland dairy farms

The research programme

- 11 farms
- Cows on study
 - 192 Holstein cows
 - 189 Jersey x Holstein cows

All cows on study for 4 lactations



Effect of breed on the percentage of cows with unassisted calvings

	Holstein- Friesian	Jersey crossbred
1 st calving	87	91
2 nd calving	97	98

Effect of breed on the percentage of calves born dead

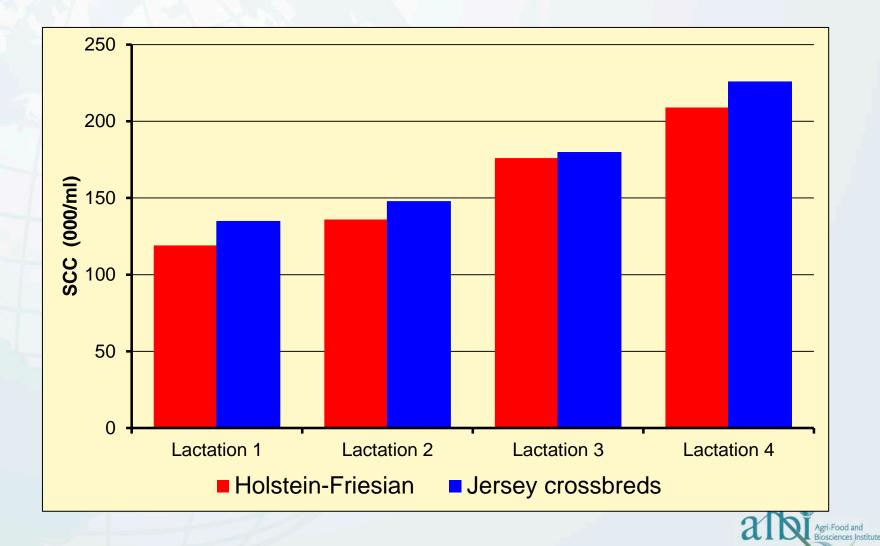
Effect of dairy cow breed on full lactation milk production (kg)

	Holstein- Friesian	Jersey crossbred	% difference compared to Holstein
Lactation 1	6084	5486	-10%
Lactation 2	6783	6152	-9%
Lactation 3	7320	6226	-15%
Lactation 4	7417	6647	-10%
Lactation 5	7550	6395	-15%

2

Milk composition (mean for lactations 1 - 5)

	Holstein- Friesian	Jersey crossbreds	% difference compared to Holsteins
Fat %	4.18	4.71	12.6
Protein %	3.39	3.58	5.6



Effect of dairy cow breed on full lactation fat + protein yield(kg)

	Holstein- Friesian	Jersey crossbred	% difference compared to Holstein
Lactation 1	453	444	-2%
Lactation 2	518	508	-2%
Lactation 3	556	520	-6%
Lactation 4	559	558	-0%
Lactation 5	570	516	-9%

a

Somatic cell count during lactations 1-4 ('000/ml)

Are Jersey crossbred cows more fertile? Conception rate to 1st AI

	Holstein- Friesian	Jersey crossbreds	% difference compared to Holstein
Heifers	61%	72%	18%
Lactation 1	46%	54%	17%
Lactation 2	44%	54%	22%
Lactation 3	51%	55%	8%
Lactation 4	45%	52%	15%

Main reasons for culling cows (lactations 1 - 4)

	Holstein- Friesian	Jersey crossbreds
Infertile (%)	30.2	25.0
Slipped calving pattern (%)	5.5	4.1
Mastitis (%)	2.7	2.7
High SCC (%)	3.0	2.8
Feet and leg problems (%)	4.1	0.5
Low milk yield (%)	2.3	1.1
% of cows completing four lactations on the study	38.8	47.9

Economic comparison of Holstein and Jersey crossbred cows

	Holstein-Friesian	Jersey crossbred	
Milk solid (litres/cow/year)	6372	5973	
Fat (%)	4.17	4.74	
Protein (%)	3.39	3.59	
Outputs (£/cow/year)			
Milk sold	1728	1739	
Calves sold	91	71	
Cull cows sold	165	96	
Less replacement charge	358	266	
Total outputs	1626	1640	
Variable costs (£/cow/year)	763	750	
Gross margin (£/cow/year)	863	890	
Overhead costs (£/cow/year)	490	490	
Net profit (£/cow/year)	373	400	

Where do you go after the first cross?

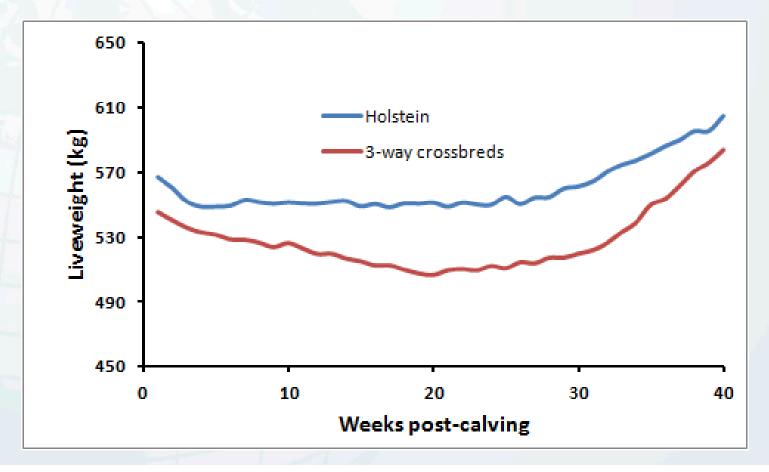
- Criss-crossing
 - Proven crossbred sires
- Three-way rotational cross ?
 - Crossbreeding systems should use <u>three</u> breeds to capitalize on hybrid vigor
 - Two breeds limits impact of hybrid vigor?
 - Four breeds limits impact of single breeds ?
 - Select <u>three</u> breeds carefully (Les Hansen)

Three-breed rotational cross scheme being used at Hillsborough

Holstein

Jersey

Swedish Red


Performance of three-way crossbred cows

	Low input		Moderate input	
	Holstein	3-way crossbreds	Holstein	3-way crossbreds
Concentrate input (t)	0.7 t	0.7 t	1.6 t	1.6 t
Milk output (kg)	6370	5325	7647	7120
Fat (%)	3.6	4.1	3.6	4.1
Protein (%)	2.8	3.2	3.0	3.2
Milk solids (kg)	410	395	511	526
SCC (000/ml)	135	121	82	206

Live-weight changes of Holsteins and three-way crossbred cows

Practical considerations when considering crossbreeding

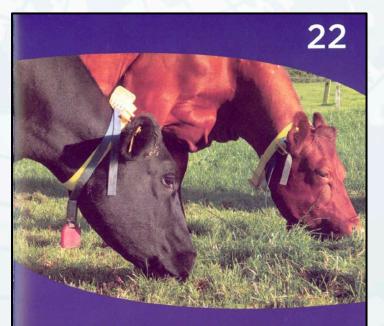
Key genetic issues to consider

- Crossbreeding is not 'true' genetic improvement.....but it can compliment it.....
 -by introducing desirable genes/traits from another breed
- Hybrid vigour should be viewed as an added bonus from crossbreeding.....not the primary reason
 - Benefits can be considerable, BUT variable
 - Not passed to next generation
 - Crossbreeding can be used to reduce inbreeding depression,
 - but this is not a major issue in most UK herds at present

Choice of breed and sire

Breeds choice?

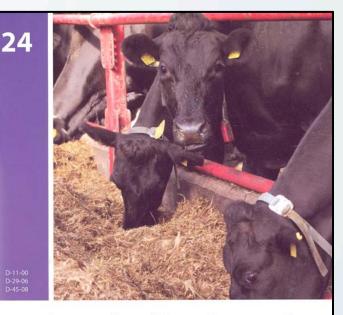
- Select breeds for specific needs/traits, while normally aiming to minimise loss of milk
- Select breeds with robust progeny testing programmes (which focus on traits of economic importance)
- Maintaining genetic distance should increase heterosis
- Choice of sire within breed? perhaps most critical decision!
 - Use top sires from within the breed selected for economic traits of importance
- Establish a clear breeding strategy for next generation
 - Two breed rotational cross (67% heterosis)
 - Three breed rotational cross (86% heterosis)
 - Use of progeny tested crossbred sires



Management issues

- Crossbreeding should not be adopted to solve problems associated with poor management (it might just 'mask' the problems)
 - Crossbreeding' is a long term commitment
- Can complicate management issues
- Impacts on value of male calves, cull cows, surplus breeding stock and herd valuation
- Evidence from other parts of the world indicate that well planned and well managed crossbreeding programmes can result in robust cows and improved profitability – AFBI research supports this

'Farmer booklets' available on AgriSearch website



A comparison of the performance of Holstein-Friesian and Norwegian Red cows on Northern Ireland dairy farms

July 2012

Project D-10-00

A comparison of the performance of Holstein-Friesian and Jersey crossbred cows across a range of Northern Ireland milk production systems

Agri-Food and

Biosciences Institute

d