

Results from ORC trials: Variety performance in organic conditions

By Nick Fradgley

The QUOATS project:

'Harnessing new technologies for sustainable oat production and utilisation'

ORC trials at Wakelyns Agroforestry

Grown as a 1st cereal

Four trial years

5 Husked varieties:

- _{1.} Balado
- 2. Mascani
- 3. Brochan
- 4. Tardis
- 5. **Gerald**

3 Naked Oat varieties:

- 1. Bastion
- 2. Mason
- 3. Racoon

Two Fertility Levels:

- . Untreated
- 2. Organic chicken manure

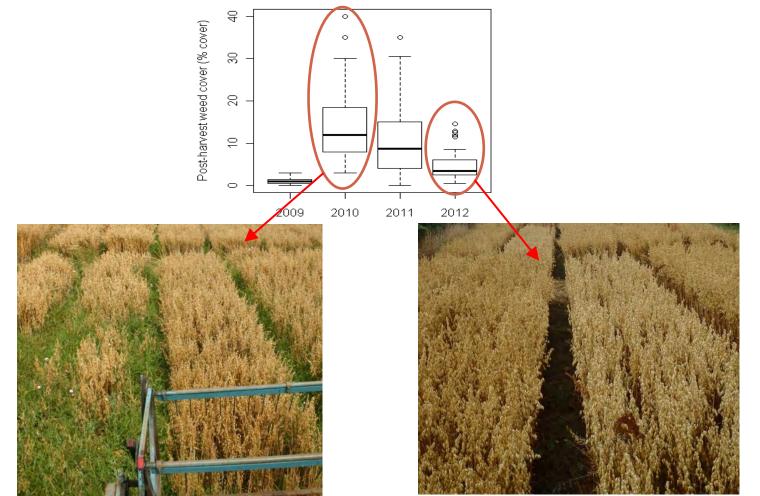
Results showing:

- Variety performance over four years
- What factors affect variety performance (weeds or disease)?
- What crop traits indicate weed competitiveness?
- Can crop management increase grain quality?
- Should variety selection be based on yield, disease resistance, weed competitiveness or grain quality?

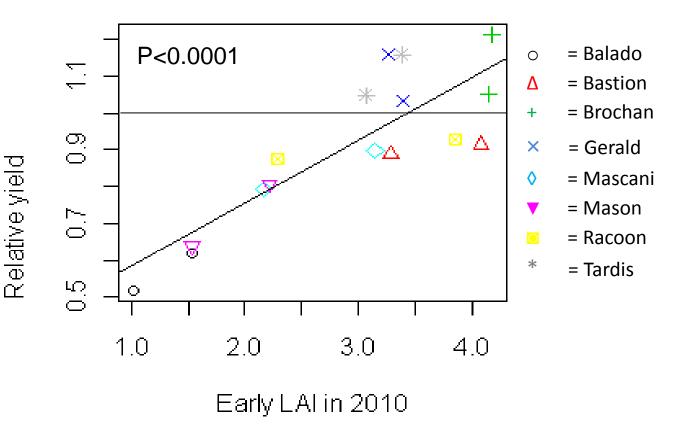
Variety performance over four years:

Strong year effect on variety performance

	Yield ranking							
	Year 1	Year 2	Year 3	Year 4				
	Mascani	Gerald Tardis		Mascani				
Husked	Brochan	Brochan	Brochan	Balado				
	Tardis	Tardis Mascani		Gerald				
	Balado	Mascani Gerald		Brochan				
		Balado	Balado	Tardis				
Mean yield (t/ha)	8.7	8.6	6.2	9.2				
	Bastion	Bastion	Bastion	Bastion				
Naked	Racoon	Racoon	Mason	Racoon				
	Mason	Mason	Racoon	Mason				
Mean yield (t/ha)	5.7	5.5	3.8	6.4				


What is affecting variety performance in different years?

Do weed competitive varieties do relatively better in a high weed year?


- Comparing 2010-11 and 2012-13 to get a relative yield
- Relative yield = average yield in 2010 / average yield in 2012

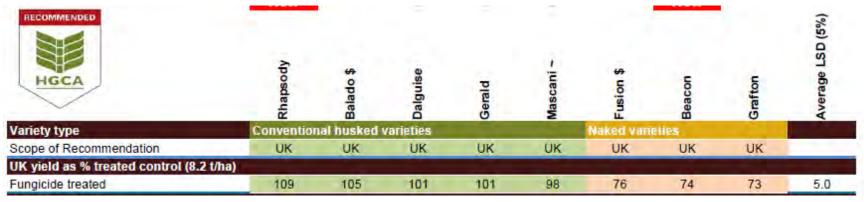
Do weed competitive varieties do relatively better in a high weed year?

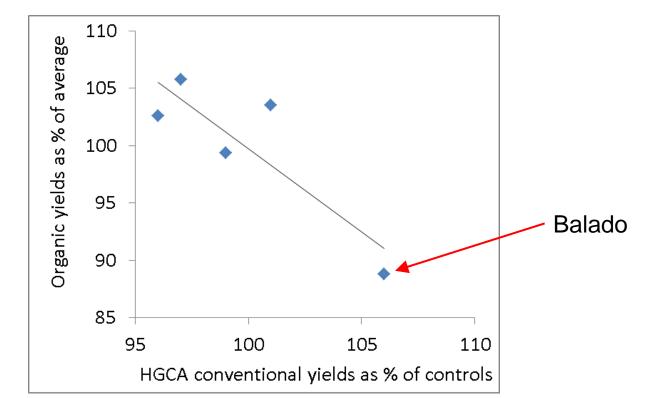
YES

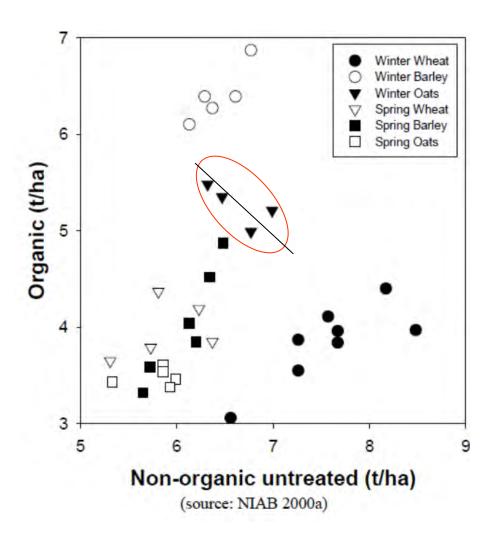
Do weed competitive varieties do relatively better in a high weed year?

Relative importance of competitive traits:

Trait	P value in linear model against relative yield				
Early canopy cover	<0.001				
Mid canopy cover	<0.001				
Late canopy cover	0.014				
Crop emergence rate	0.019				
Crop density	0.022				
Crop height	0.089				


Early season canopy cover is more important than height for weed competition




Variety selection based on conventional yield data?

Results from NIAB:

NIAB (2000a). Cereal Variety Handbook. National Institute of Agricultural Botany, Cambridge.

Agronomy to increasing grain quality?

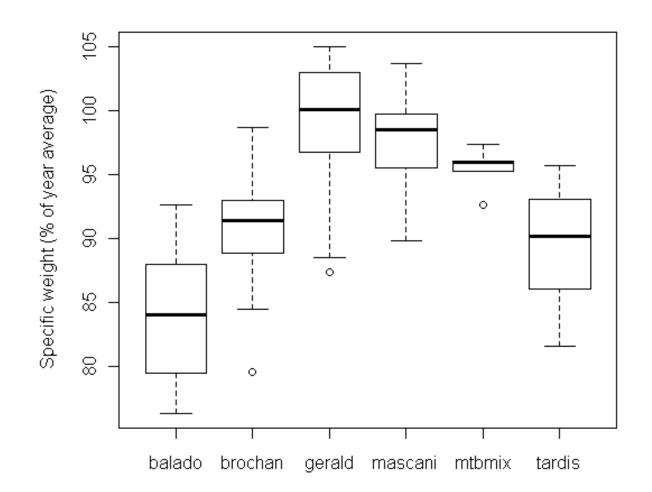
Journal of Agricultural Science (2003), 141, 249–258. © 2003 Cambridge University Press DOI: 10.1017/S0021859603003654 Printed in the United Kingdom

249

Effect of nitrogen, seed rate and plant growth regulator (chlormequat chloride) on the grain quality of oats (Avena sativa)

R. A. BROWNE^{1,2*}, E. M. WHITE^{1,3†} AND J. I. BURKE²

¹ The Queen's University of Belfast, Department of Applied Plant Science, Plant Testing Station, Crossnacreevy, Belfast BT6 9SH
² Teagasc Crops Research Centre, Oak Park, Carlow
³ Department of Agriculture for Northern Ireland, Applied Plant Science Division, Plant Testing Station, Crossnacreevy, Belfast BT6 9SH


(Revised MS received 9 October 2003)

- Found a decrease in specific weight with added fertility and higher seed rates.
- An effect of incomplete grain filling or secondary tillers?

Agronomy to increasing grain quality?

Variety choice has biggest influences on quality.

An Organic Recommended List?

	Husked				Naked						
©RGANIC RESEARCH CENTRE ELM FARM www.QUOATS.org	Balado	Brochan	Gerald	Mascani	Tardis	Bastion	Mason	Racoon			
Yield (% of average)											
Grain (Husked 8.1 t/ha, Naked 5.4 t/ha)	89	103	104	106	99	111	87	101			
Straw	96	100	96	112	96	95	92	112			
Yield stabilty	6.1	8.0	6.5	7.3	8.8	8.0	8.8	7.1			
Disease resistance											
Septoria avenae	0	3	4	10	1	8	3	0			
Crown rust	0	6	7	9	5	3	10	3			
Agronomic features											
Resistance to lodging	10	10	4	0	8	3	10	5			
Straw length (cm)	73	95	105	105	97	103	88	121			
Early canopy cover (Leaf area Index)	2.5	3.5	2.3	2.6	2.9	2.8	2.5	2.9			
Late canopy cover (Leaf area Index)	5.2	5.8	5.1	5.5	5.0	5.6	5.4	5.3			
Tillering abilty (stems/m²)	350	417	402	469	410	438	384	343			
Grain quality											
Specific weight (kg/hl)	48.1	51.9	55.1	55.7	51.2	63.5	64.1	67.3			

Conclusions:

- **1. Weed competition** affects variety performance more than **disease**.
- 2. Early crop establishment is a more useful trait for weed competition than late canopy cover or crop height.
- 3. Organic yields cannot easily be predicted by conventional RL data
- 4. Grain quality is more influenced by variety choice than crop management.
- Variety choice should be based on weed
 competitiveness and grain quality rather than yield.

