

ORC 2014 Organic Producers' Conference, Birmingham 22-23 January 2014

Management of perennial weeds – results and experiences from the Danish HighCrop project

Bo Melander

Department of Agroecology Aarhus University Research Centre Flakkebjerg DK-4200 Slagelse

bo.melander@agrsci.dk

Higher productivity in Danish arable crop production (HighCrop)

Main objective:

- -to increase and stabilize crop yields
 - robust crop rotations
 - robust crops
 - better nutrient management
 - better weed management

Management of perennial weeds

Main objective:

- -to develop a weed management tool
 - 1. Analyze the dynamics of perennial weeds behavior in organic cropping system
 - 2. Synthesize the results with results from other experiments and information provided by the extension services
 - 3. Formulate concepts of weed control tactics and strategies for the management of perennial weeds
 - 4. Strengthen strategic advising through the development of a picture card tool and a web-based planning tool

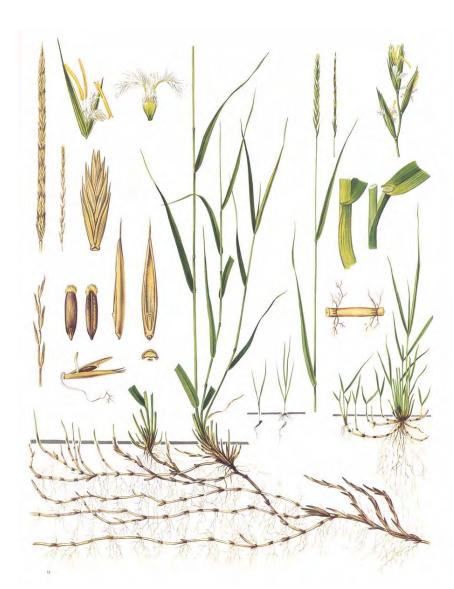
Major perennial weeds in Danish organic farming

Common couch grass (Elytrigia repens)

Creeping thistle (Cirsium arvense)

Coltsfoot (Tussilago farfara)

Sow-thistle (Sonchus arvensis)


Docks (Rumex spp.)

Perennial weeds *Bo Melander* Weed Scientist

Couch grass

Creeping thistle

The three principles

- Competition suppressive crops
- Disruption crop rotation composition
- > Control mechanical and thermal tactics

Basic measures

- > Record and map your weeds
- Ensure even fields
- > Inject slurry and other volatile fertilizers
- Diversify crop sequences with frequent inclusion of competitive crops
- Minimum 20% N-fixating green manure crops, preferably suitable for mowing

Strategies and tactics identified, mixed stands

Low presence of perennial weeds < 1 flowering shoot m⁻²

- 1-2 post-harvest stubble cultivation whenever possible
- 2. Catch crop
- 3. Mould board ploughing

Perennial weeds Bo Melander Weed Scientist

Strategies and tactics identified, mixed stands

High presence of perennial weeds > 1 flowering shoot m⁻²

- Mini-summer fallow
 - 1. Ploughing /cultivation from 1st July
 - 2. Repeated cultivations until early August
 - 3. Catch crop from beginning August
 - 4. Ended by ploughing late autumn or spring
- Disc or p.t.o driven weeding devices
 - 1. One pass post harvest (tine + disc/p.t.o.)
 - 2. Another pass 3 weeks later (disc/p.t.o.)
 - 3. Ploughing late autumn or spring

Implements for intensive cultivation

- 80-90% control after first year
- 95-100% control after two
 years in a row

Specific tactics / strategies

Against creeping thistle

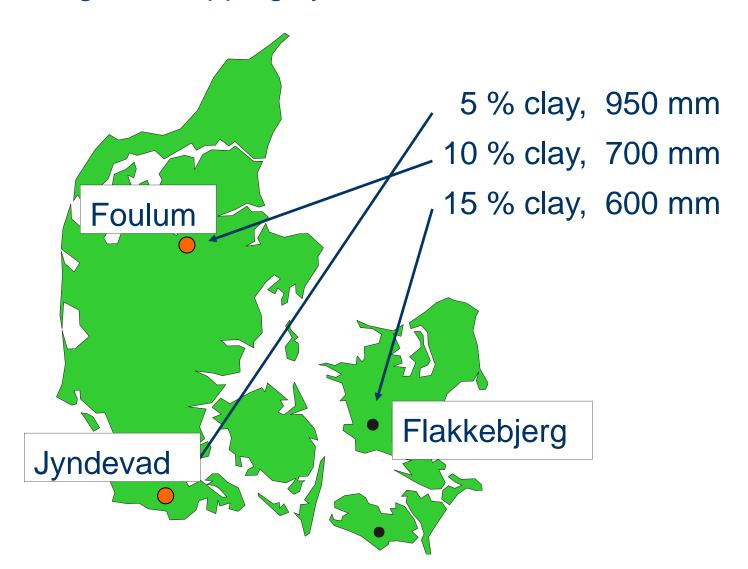
- 1. Ploughing /cultivation post-harvest
- 2. Catch crop from beginning August
- 3. Ploughing late autumn or early spring

Against couch-grass

- Uprooting and removal of severe patches
- 2. Depletion of the food reserves

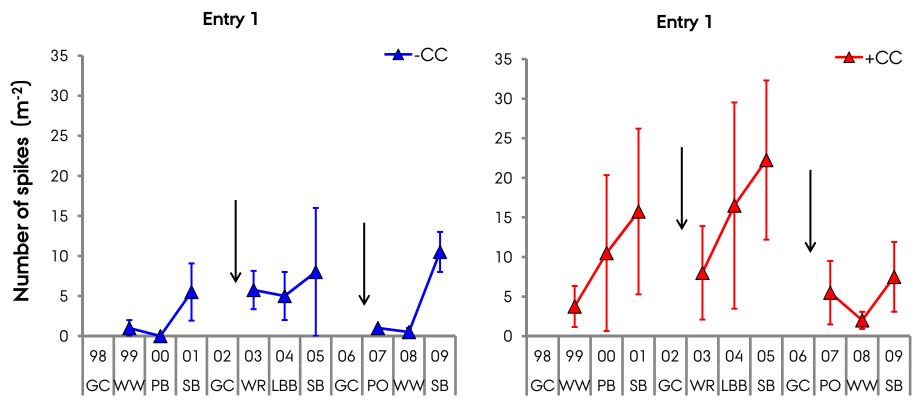
Perennial weeds Bo Melander Weed Scientist

23rd January, 2014



www.beach-tech.com

Organic cropping systems at three locations in DK, 1997-2009


The cropping systems at Jyndevad, a coarse sand

Cycles	Crop rotation O1	Crop rotation O2
1997-2000	S. barley:ley	S. barley:ley
	Grass-clover	Grass-clover
	S. wheat	W. wheat
	Lupin	Pea:barley
2001-2004	S. barley:ley	S. barley:ley
	Grass-clover	Grass-clover
	S. oats	W. rye
	Pea:barley	Lupin:bean:barley
2005-2009	S. barley	S. barley:ley
	Pulse crop	Grass-clover
	Potato	Potato
	W. wheat	W. wheat

± catch crops, ± manure (slurry)

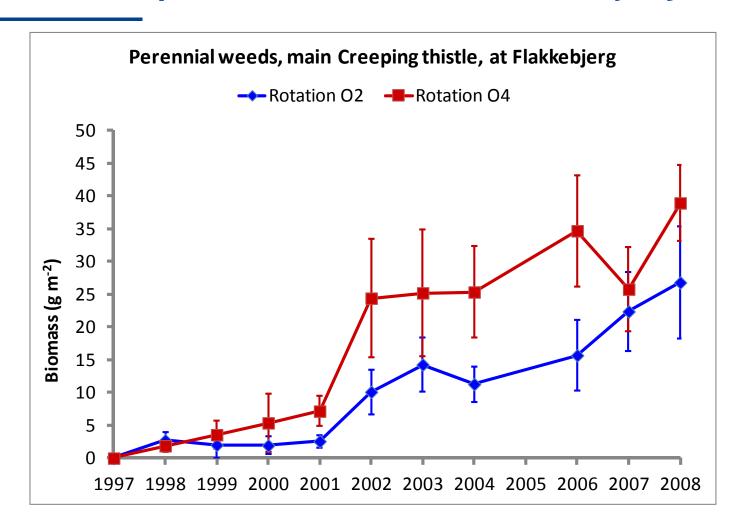
Couch grass development in rotation O2 on coarse sand

Factors that promoted Couch-grass growth

No	Factors	Effects
- 1	Pulse:barley mixture	+736%
2	Spring wheat	+501%
3	Winter wheat / grass-clover as the preceding crop	+444%
4	Lupin / grass-clover as the preceding crop	+397%
5	Oat / cerelas as the preceding crop	+203%
7	Lupin / cerelas as the preceding crop	+195%
8	Oat / grass-clover as the preceding crop	+158%
9	Spring barley / no cereals as the preceding crop	+154%
10	Spring barley / cereals as the preceding crops	+124%
- 11	Winter wheat / spring barley as the preceding crop	+103%
12	Winter rye	0%
13	Potatoes	0%

Factors that reduced the Couch-grass population

No Factors	Effects
1 Mini summer fallow	-62%
2 Stubble cultivation followed by a catch crop	-26%
3 Tine cultivation in spring	-20%
4 Fertilisation	-18%
5 Stubble cultivation without a subsequent co	atch -14%
crop	


The cropping systems at Flakkebjerg, a sandy loam

Cycles	Crop rotation O2	Crop rotation O4
1997-2000	S. barley:ley	Oat
	Grass-clover	W. wheat
	W. wheat	W. wheat ¹
	Pea:barley	Pea:barley
2001-2004	S. barley:ley	W. wheat ⁴
	Grass-clover	Oat
	W. wheat	S. barley
	Lupin:barley ²	Lupin ³
2005-2008	S. barley:ley	S. barley
	Grass-clover	Faba bean
	Potato	Potato
	W. wheat	W. wheat

± catch crops, ± manure (slurry)

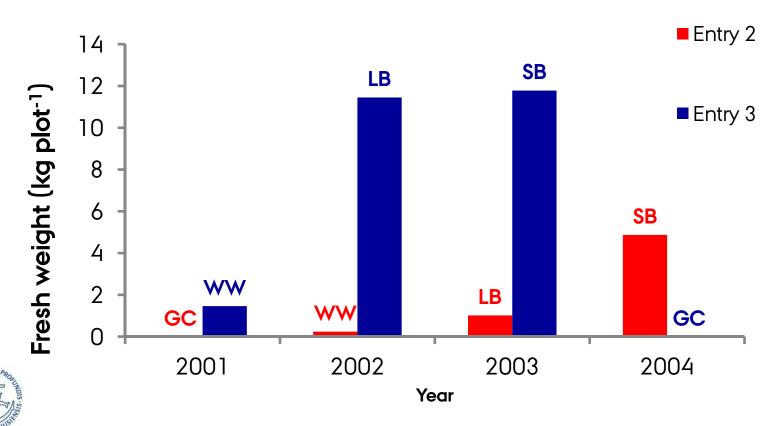
Proliferation of perennial weeds at Flakkebjerg

Perennial weeds

Bo Melander

Weed Scientist

Main factors affecting the growth of creeping thistle


- ✓ Crop rotation
- ✓ Entry point, i.e. the specific crop sequence
- Catch crop
- Manure
- Stubble cultivation

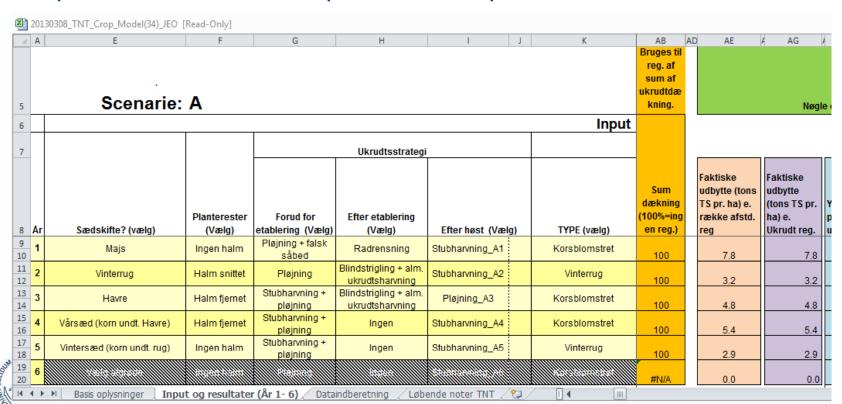
The importance of entry point / crop sequence

Creeping thistle in crop rotation O2

Crop effects on creeping thistle

Crop	Effects
Lupin	8.9
Lupin:barley	2.6
Winter wheat	2.0
Spring barley	1.0

Strategic planning - picture card tool



Web-based planning tool

Crop rotation (spreadsheet).

Crops, fertilisation, weed species, weed pressure, control actions etc.

