Modelling the effects of a large scale conversion to organic farming in England and Wales

Laurence Smith, Sustainability Researcher and PhD Student, School of Energy, Environment and Agrifood, Cranfield University

Cranfield

Organic Producer Conference 2014,

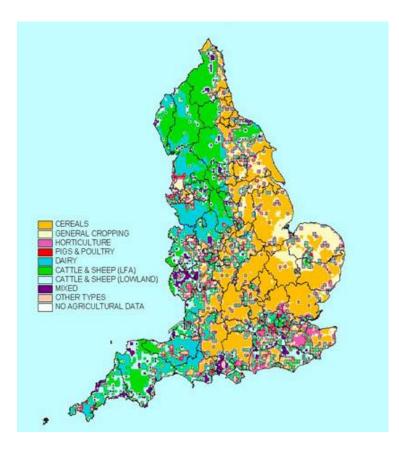
27th November

Research Question: how would a large scale conversion to organic agriculture in England and Wales meet the demands for a lower environmental impact yet more productive agriculture?

Working hypotheses:

Hypothesis 1:

A 100% conversion of agriculture in England and Wales to organic practices will not significantly reduce the levels of production for major arable and horticultural crops and livestock products.


Hypothesis 2:

A 100% conversion of agriculture in England and Wales to organic practices will not result in a net increase in greenhouse gas emissions.

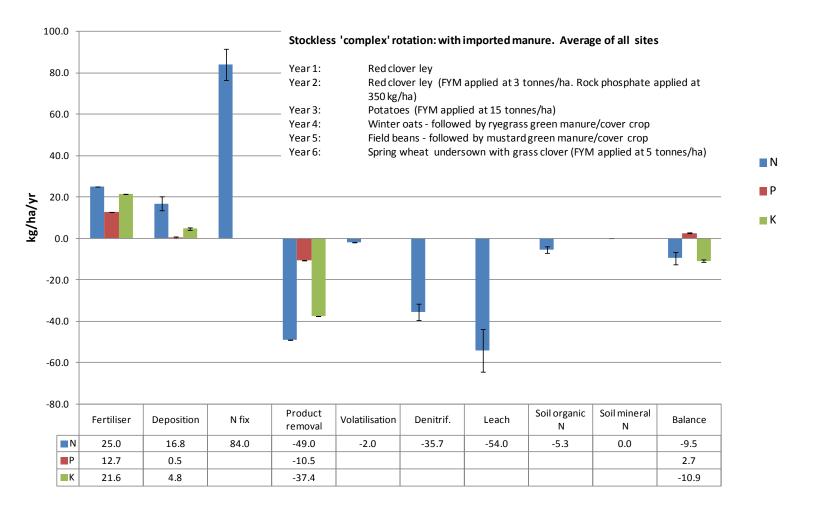
Modelling approach selected:

- Assume that current structure of the industry (by Robust Farm Type) represents an optimum, given that each farm is facing multiple constraints.
- The *dominant enterprise* will remain in place e.g. a dairy farm will remain a dairy farm. Considerable changes will still be observed within each farm type
- A Linear Programming model will be tasked with maximising energy production, subject to constraints

Source: Defra

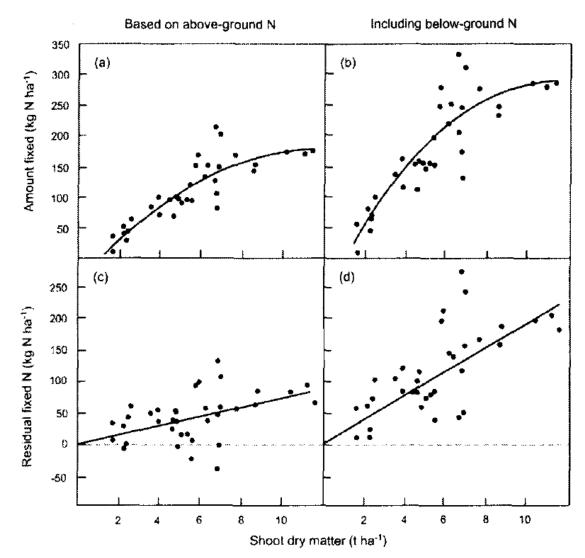
Key constraint: N availability by rainfall and soil

• Nitrogen availability within a range of soil and rainfall combinations was set as a limiting factor

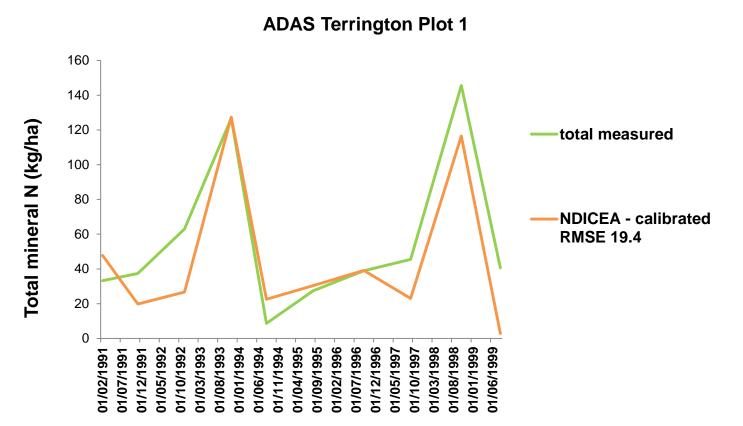

Rainfall	East Midlands: Land area by soil type ('000 ha)				
	Organic	Heavy	Medium	Light	
540-635 mm	50	2700	1800	1000	
636-723 mm	0	1080	900	0	
724+ mm	0	1800	900	0	

- The N balance for each soil/rainfall combination were calculated using NDICEA
- Nutrient balances from NDICEA will weight yields of crops in typical rotations on farm types

Key constraint: N availability by rainfall and soil

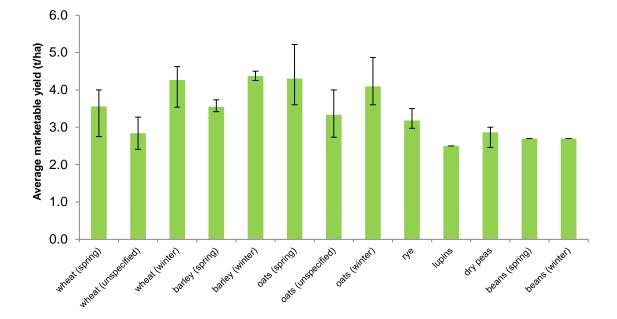

• Nitrogen availability has been determined using typical organic rotations and stocking rates:

Source: Defra project OF03100: Assessing the Sustainability of Organic Crop Yields and Rotations


Challenges in the modelling process: N fixation and N availability: highly variable!

Source: Peoples et al. (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems

Estimates of N availability produced by NDICEA close to recorded data:



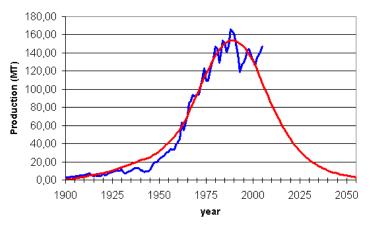
Comparison of modelled amounts of soil N produced by NDICEA to field measurements (RMSE = Root Mean Square Error)

Finding activity data on organic crop yields

- Have been able to obtain averages, although ranges are provided, cannot distinguish between position in rotation
- Planning to consult experts for estimates following a Delphi approach
- Also missing data on oilseed rape, sugar beet and other 'non-organic' crops

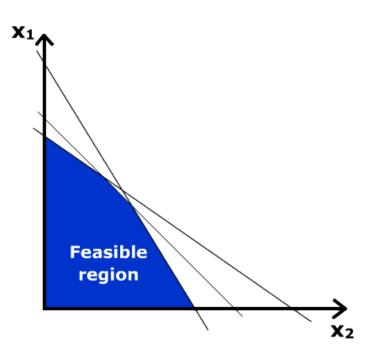
Source: Data collected from dePonti et al. (2012), Seufert et al. (2012) and expert survey

Challenges in the modelling process


- Farm type specification for cereal farms: very few organic specialist cereal producers – tend to fall under the 'general cropping' farm type i.e. a mix of crops including potatoes and other veg.
- Have decided to amalgamate area of specialist cereal and general cropping for the time being
- Imported compost and feed: limits to availability? Would sewage sludge be available in a 100% organic scenario?

Inter-farm transfers of manure: to what extent would this be feasible?

Source: David Wilson, Duchy Home Farm (2014)


World rock phosphate production

Source: Cordell et al. (2009)

Challenges in the modelling process

- Linear programming (LP) approach used within this study
- A LP will maximise (or minimise) an objective function subject to constraints
- Jumpy behaviour in linear modelling- from one extreme to another
- Repeated runs and model adjustments can overcome this

	Pro		
	Α	В	Available
Assembly (hours)	2	4	100
Finishing (hours)	3	2	90
CM/unit	\$25	\$40	

Other challenges:

- Scaling up a small sector difficult to predict what a 100% organic England and Wales would look like
- Funding for the remaining activity: organic farming not a priority for research funding
- Delays in obtaining data from official providers
- Lack of researchers working on similar topics within the UK

In Summary:

The main challenges to date mainly related to data availability in the following areas:

- N fixation by legumes
- Crop yields by position in rotation
- Crop yields for 'non-organic' crops such as sugarbeet
- Organic farm typology for specialist cereals and stockless farms
- Scaling up a small sector to 100% of farmed area

Other challenges relate to perception of the organic sector, this is changing rapidly but remains an issue

