**Building soil carbon at** Hardwick – an interaction with biodiversityfeeding people and planet

Iain Tolhurst tolhurstorganic@yahoo.co.uk



The farm business
Established organic 1976
Present site 28 years stockfree
Produce over 70 crops-100tonnes pa
Self sufficient system
Local sales



### Field cropping

Flood plain

Woodland

Green manures

Pond

Coppice

Beetle banks

Field crops

Field margins Hedgerows Tree shelter belts

Chalk Downland

## The walled garden

### **Carbon farming**

- Vegetable production dependant on the soils carbon collection
- Build carbon
- Use carbon
- Replace carbon + bit extra
- Sustainable farming=Carbon managementgood soil management

# **Manage inputs**

Energy
Materials
Growing system
Labour



# Functional agricultural biodiversity

- Systems approach
- Integral with whole farm system
- Working for you, your farm our environment
- Not a bolt on extra



#### **Bio-diversity on the ground**

#### 1.The soil

#### 2.The understory

### 3. The heavy carbon



# **1.The soil-ultimate bio-diversity**

- Organic material –compost -plant roots
   -green material
- Rotation-diverse plant types
- Minimal tillage
- Revere the earthworm
- Retention/increase
- of carbon





# Woodchip Compost



# Feeding soil-the green manure

Fertility from within farm

systems

- Adding nutrient and carbon
- Valuable contributor to bio-diversity
- Recycle all nutrients
- Recycle off farm lossescompost applications
- As far as possible closed system
- Cropping up to 70% land area



#### **Soils-Main fertility building**

- Lucerne
- Red or white clover
- Grasses
- Sainfoin





#### Short season G, manures

- •Trefoil
- •S W Clover
- Vetch
- Crimson clover
- Phacelia
- Mustard
- •Cereals
- Chicory

### Soils-Undersowing green manures (UGM)

- Improves pest/predator balance
- Improves soil fauna and fertility
- Controls some weed species
- Over winter- protection of soil
- Allows for soil carbon stability



# **Soils-Relay Green manures**



#### 2. The understory

#### Understory-Long term beetle banks

#### Understory- short term refuges

# Understory-Wild Flower mix

# Understory-Flowering crops

#### **Understory-Weeds**



### **Understory-Field boundaries**



### 3. The heavy carbon



# **Heavy Carbon-Hedges**



# Heavy carbon-shelter belts

#### Heavy carbon-Permanent coppice

# Agro-forestry

# The farm carbon pictureemissions 2012

| Fuel for tillage/transport/irrigation | 19%  |
|---------------------------------------|------|
| Produce delivery                      | 33%  |
| Electricity                           | 17%  |
| Materials                             | 2.5% |
| Embodied energy-van<10yr old          | 6.3% |
| Green manures (N2O)                   | 11%  |
| Waste management                      | 10%  |

# The farm picture-sequestration

Hedges 17% Coppice 24% Field margins 9% Soil organic matter increase 49% Total emissions- 16.6 tonnes CO2e\* CO<sub>2e</sub>\* Sequestration 21 tonnes Balance =  $4 + \text{tonnes}^*$ 

\*as calculated for year ending 2012 Farm Carbon Cutting Toolkit case study/Tolhurst

