

Participatory research in the UK: Soil health and grassland productivity

Coline Capron & Anja Vieweger The Organic Research Centre

> SOLID Conference Bristol, 26 January 2016

Research question

How to improve productivity? SOLID workshop of UK dairy farmers identified soil related problems with productivity:

Difficulties understanding key elements of soil health and fertility (how to measure it?)
Lack of knowledge on how to improve soil health and fertility

Compaction and organic matter as key factors of grassland fertility

What methods are out there to measure it? (scientific knowledge / farmers' knowledge)

Which ones are actually used and useful?

What determines the decision to use them (or not)?

Steps of the project

Literature review on available methods Online survey of UK farmers In-depth interviews with selected farmers Case studies on 3 farms to compare methods Workshop: demonstration and feedback

Literature review: Indicators of intact and impaired soil structure

(easily identifiable (e.g. visual) for a diagnostic directly in the field)

Indicators	Significance	Indicator characteristics in an intact soil structure	Indicator characteristics in an impaired soil structure
Surface appearance	Indication of structural damage below the surface	Unbroken surface (no wheeling or poaching signs); Earthworm casts	Wheeling, poaching signs by livestock, weeds and/or low crop surface cover, water ponding, runoff pathways, surface crusting, restricted crop growth
Aggregate size, shape and porosity	Indication of soil aeration, potential drainage and root development	Small aggregates (0-10 mm); round shape, macro pores in and between the aggregates	Large or very large aggregates (5-10, >10 cm) Angular (blocky, platy) or no shape (massive); Few or no macro-pores
Aggregate consistency (moist soil)	Indication of the root pressure needed to break aggregates and soil workability	Friable (aggregates easily crushed between thumb and index finger)	Firm (noticeable pressure needed to break the aggregates)
Soil colour	Indication of soil oxydo-reduction status related to aeration, drainage and soil organic matter	Dark brown colour near the surface	Pale soil with grey-blue-green colour Presence of rusty coloured mottles, and/or black mottles
Soil smell	Indication of soil aeration and drainage	Sweet earthy smell	Sulphur smell (rotten eggs)
Roots	Indication of the potential effect of soil structure on roots	Smooth, cylindrical shape, even spatial distribution	Stubby, gnarled shape, restricted to the surface or clustered in pores or cracks, absence of root hairs
Earthworms	Indication of the potential effect of soil structure on soil fauna (represented by earthworms; the inference is that if earthworms are present, other less discernible fauna is present).	Presence and number of earthworms, earthworm burrows and cast material on the surface. Diversity of ecological classes (epigeics, endogeics, anecics)	Absence or reduced number of earthworms, earthworm burrows, cast material on the surface Reduced diversity of ecological classes (epigeics, endogeics, anecics)

Literature review: Methods to assess soil structure

	Topsoil observation						
	Visual Evaluation of Soil Structure (VESS)	Healthy Grassland Soils (HGS) inspired of the VESS	Trierer Soil Quality Test	Visual Soil Assessment (VSA or "drop test")	Visual Soil Assessment - fast (VSA-fast)	Peerklamp scoring	
References	(BALL et al., 2011)	(EBLEX-DAIRYCO, 2014)	(RUF et EMMERLING, 2014)	(SHEPHERD, 2000)	(McGARRY, 2006)	(INRA, 2005)	
Sampling							
Assessment depth	Topsoil (0-25 cm)	Topsoil (0-30 cm)	Topsoil (0-30 cm)	Topsoil (0-20 cm)	Topsoil (0-40 cm)	Topsoil (0-25cm)	
Labour input	Low	Low	Low	Low	Low	Low	
Time input for caracterisation	M edium	M edium	Low	M edium	Low	M edium	
Cost	Low	Low	Low	Low	High (active Organic C field kit)	Low	
Knowledge required	No	No	No	Yes (botannical knowledge for the plant indicators)	No	No	
Repetitions number	10 in an area of uniform crop or soil color or where there is a problem	No information	1 or 2 if there is a slope (top and bottom)	3 to 4	1 in representative areas, depending on the reason for the investigation	Minimum 10, up to 20 to enable statistical comparisons between land units	
Caracteristics							
Textural qualifier	No	No	Yes	Yes	Yes	Yes	
Distinguish layers	Yes	Yes	No	No	Yes	Yes	
	Soil indicators:	Soil indicators:	Soil indicators:	Soil indicators :	Soil structure indicators :	Soil indicators :	
	- Structure quality / consistence	- Structure quality / consistence	- Organic residues (mulch	- Structure and consistence	- Presence/degree of tillage pan	- Aggregate size, shape,	
	- Size, porosity, strength and	- Size and appearance of	layer)	- Porosity	- Aggregate size distribution	porosity, stability and strenght	
	shape of aggregates	aggregates	- Erosion,	- Colour	- Earthworms	- Anaerobic zones	
	- Number an distribution of	- Visible porosity and roots	- Penetration rate,	- Number and colour of soil mottles	- Diameter and development of		
	A serve set a fina serve set at ion 1 5	- Anaerobism (red-orange	- worm casts,	- Earthworm counts	Tours since consistences of		
	- Aggregate fragmentation 1,5-	channels, sulphur small, gray		- Surface rener	- 1 ype, size, consistency of		
Indicators assessed	and easily break up)	color)	- Aggregate stability	- Pasture composition	- Soil terture		
	- A paerobism: Pockets or		- Aggregate stability	- Pasture growth and regrowth	- Soil colour		
	layers of grey soil smell of			- Pasture utilisation	Soil measurements :		
	sulphur ferrous ions			- Area of bare ground	- Slaking and dispersion		
	- color			Drought stress	- Soil nH		
-				- Surface ponding	- Water infiltration		
				- Stock carrying capacity and	- Organic carbon (labile)		
	8			fertiliser use			

Online survey and interviews

Proportion of farmers who mentioned the selected indicator of a good soil structure

Online survey and interviews

Proportion of answers for the use of certain soil structure assessment methods

Indicators of SOM

Three fractions of SOM are usually described (stages of decomposition, breakdown time, function etc.)

Labile SOM:

- o energy and nutrients for soil micro-organisms
- o release of nutrients for plant use
- o most sensitive to changes.

• Stable SOM:

- o less decomposable
- cation exchange capacity

• Inert SOM:

- least reactive OM fraction
- o products of humification most resistant to min.
- o. affecting the physical properties of the soil

LID Sustainable Organic and Low Input Dairying

Online survey and interviews

Proportion of answers for the use of certain SOM indicators

SOLID | Sustainable Organic and Low Input Dairying

Online survey and interviews

- Farmers' indicators of soil structure generally match scientific indicators
- Farmers' experience and monitoring of their own land is a complementary source of information
- The **spade diagnosis** (cheap, quick, reliable) is commonly used
- However 17.7% of farmers never assess SS, 50% of farmers use
 <3 indicators, 16.7% only look at the surface
- A high proportion (30.6%) of farmers **never assess** their SOM
- Active SOM indicators are **not popular**, no difference in their use compared to Total SOM indicators

Based on the results of the online survey as well as the follow-up interviews

- 3 farms were identified to compare
- 3 different soil assessment tools in practice

(One horticulture and two dairy farms)

Visual Soil Assessment (VSA); (SHEPHERD, 2000)

- Aimed at soil quality under pastoral grazing
- "drop test" to break aggregates
- Rates aggregate size distribution, soil porosity, soil colour, presence/quantity of mottles, earthworms and surface relief

Healthy Grassland Soils (EBLEX-DAIRYCO, 2014)

- Aimed at grassland soil evaluation
- Rates size, shape, and appearance of aggregates, soil porosity, root growth, soil smell and colour, and earthworms

Trierer soil quality test (RUF and EMMERLING, 2014)

- So far only available in German
- Hands-on approach and uncomplicated steps
- Rates organic mulch layer, erosion signs, penetration resistance, earthworm casts, root dev., nutrient humus, aggregate stability

Horticulture Farm	Mean BD (g/mL) per field	Mean HGS score	Soil structure qualification	Mean VSA score	Soil structure qualification	Mean Trier score	Soil structure qualification
Best field	1.19	1	Good : Friable	22	Good	50	Optimal
Worst field	1.23	2	Good : Intact	16	Moderate	41.5	Correct

Dairy Farm nº1	Mean BD (g/mL) per field	Mean HGS score	Soil structure qualification	Mean VSA score	Soil structure qualification	Mean Trier score	Soil structure qualification
Best field	1.06	1.2	Good : Friable	15.7	Moderate	44	Correct
Worst field	1.15	3	Moderate : Firm	11.7	Moderate	38	Correct

Dairy Farm n ^o 2	Mean BD (g/mL) per field	Mean HGS score	Soil structure qualification	Mean VSA score	Soil structure qualification	Mean Trier score	Soil structure qualification
Best field	1.27	2	Good : Intact	16.5	Moderate	44	Correct
Worst field	1.32	3.9	Poor : Compact	9.8	Poor	41	Correct

SOLID | Sustainable Organic and Low Input Dairying [Capron C., 2015]

- Visual soil assessment methods identified a difference in SS
- However, the SS qualification didn't change with the change in score for VSA (1/3) and Trier (2/3); reasons?:
 - the HGS has a more sensitive scoring system
 - $\circ~$ Higher number of repetitions for HGS and VSA
- HGS tends to overvalue SS; reasons?:
 - o Earthworm counts in the scoring system of Trier and VSA

The studies were conducted in August (temperature, moisture...)

Limiting factors for farmers to assess soil

1=not a limiting factor, 5=highly limiting factor

Limiting factor	Score
Time (to take samples, conduct the test, interpret the results)	2.9
Cost (to purchase test and equipment, labour)	2.6
Knowledge (how to correctly conduct the test, interpretation of results)	4

SOLID | Sustainable Organic and Low Input Dairying [Capron C., 2015]

SOLID | Sustainable Organic and Low Input Dairying

[Capron C., 2015]

SOLID Farmer workshop

Overall conclusions

- Farmers confirmed: knowledge is a limiting factor to assess and manage their soils
- Other determinant factors: inherent soil properties, production system characteristics, dependance on a third party

Farmers can improve their SS and SOM assessment

- A range of methods: Scoring system, Reference points (subjectivity and consistency), Repetition (representability of SS variability)
- Support of an advisor (subjectivity, interpret the results)
- Repeat assessment over time (monitoring) to develop experience-based indicators

Thank you

i ji l

References

- **CAPRON, C., 2015.** Integrating British organic farmers' perception and local knowledge of soil structure and organic matter assessment with scientific knowledge for sustainable land management. Understanding the determinants for farmers adopting methods for soil structure assessment. Masters Thesis, LaSalle Beauvais, Institute Polytechnique, France.
- **EBLEX-DAIRYCO**, 2014. Healthy Grassland Soils Four quick steps to assess soil structure. Available at: <u>http://dairy.ahdb.org.uk/resources-library/technical-information/grass-management/healthy-grassland-soils-guide/#.VgQBS2xwbcs</u>
- **INGRAM, J.**, 2008. Are farmers in England equipped to meet the knowledge challenge of sustainable management? An analysis of farmer and advisor views. Journal of environmental management, volume 86, n° 1. p. 214-228
- KOLAR, L., KUZEL, S., HORACEK, J., CECHOVA, V., BOROVA-BATT, J., and PETERKA, J., 2009. Labile fractions of soil organic matter, their quantity and quality. Plant, Soil and Environment, volume 55, n° 6. p. 245–251
- LAL, R., et Shukla, M.K., 2004. Soil structure. *In* Principles of Soil Physics. p. 86-140.
- LAMPKIN, N., 1997. The living soil. *In* Organic farming. p. 13-52.
- LEACH, K., ARSENOS, G., BARALDI, A.M., COMPAGNIONI, A., and DEBRUYNE, L., 2013. SOLID Deliverable factsheet, Rapid sustainability assessment of organic and low-input farming across Europe
- **NEWELL-PRICE, J.P., WHITTINGHAM, M.J., CHAMBERS, B.J., and PEEL, S.**, 2013. Visual soil evaluation in relation to measured soil physical properties in a survey of grassland soil compaction in England and Wales. Soil and Tillage Research, volume 127, p. 65-73
- **RUF, T., and EMMERLING, C.**, 2014. Der Trierer Bodenqualitaetstest [en ligne]. Date of consultation: 24/09/2015. At: <u>http://www.trierer-bodenqualitaetstest.de/dokumente/</u>
- SHEPHERD, G., 2000. Visual Soil Assessment: Field guide for cropping and pastoral grazing on flat to rolling country. Horizons.mw : Landcare Research, Palmerston North, N.Z. : 84 p. ISBN 1-877221-92-9.
- **SOLID**, 2015. Work package 1. Date of consultation: 28/09/2015. At: <u>http://www.solidairy.eu/?page_id=331</u>
- **STROSSER, E.**, 2010. Methods for determination of labile soil organic matter: An overview. Journal of Agrobiology, volume 27, n° 2. Date of consultation: 29/09/2015. At: <u>http://www.degruyter.com/view/j/agro.2010.27.issue-2/s10146-009-0008-x/s10146-009-0008-x.xml</u>

