

Future sustainability of organic and low-input milk production: Challenges and solutions Bristol, 26th Jan. 2016

Adapted breeds for productivity in organic and low input dairy systems

Werner Zollitsch¹, Auvo Sairanen², Conrad Ferris³, Mogens Vestergaard⁴

¹BOKU-University of Natural Resources and Life Sciences (BOKU), Austria ²Natural Resources Institute (Luke), Finland ³Agri-Food and Biosciences Institute (AFBI), Northern Ireland ⁴Aarhus University, Denmark

Introduction (1)

- Milk yield potential of conventional breeds (HF) has increased dramatically during the last 3 decades (primary selection focus)
- However, the health, fertility and longevity has declined
 - ♦ Functional traits not included in breeding programmes until recently
- Additionally, "top" sires have been selected within high concentrate input systems
- The suitability of modern genotypes for organic and low input systems (OLIS) is often questioned

Introduction (2)

Requirements of cows for OLIS:

- Excellent health and fertility traits, "robustness"
- Ability to produce high yields of milk solids from forage based diets
- Many breeds are perceived to be adapted to OLIS, but mostly little evidence exists of how they actually perform within OLIS
- SOLID-project: Understanding how contrasting genotypes adapt to a systematic restriction of nutrient and energy supply
 - Three different geographical regions with specific systems, differing in concentrate inputs
 - Conventional and "adapted" genotypes examined in each region

Overview

Country	Austria (BOKU)		Northern Ire	land (AFBI)	Finland (Luke)	
Region	Alpine		Western E Grass	European sland	North European Grassland (confined)	
Genotype	Conventional	"Adapted"	Conventional	"Adapted"	Conventional	"Adapted"
	Brown Swiss (n = 21)	Local HF (n = 29)	HF (n = 34)	(SR x J x HF) (n = 34)	HF (n = 32)	Nordic Red (n = 14)
Systems examined	Low vs. moderate input 280 vs. 620 kg conc. DM		Low vs. moderate input 740 vs. 1,840 kg conc. DM		Moderate vs. high input 1,250 vs. 3,020 kg conc. DM	

Feed intake

System	Low		Control		Significance						
Breed	Conv	Adapt	Conv	Adapt	Breed	Conc	ВхС				
Total concentrate intake, kg DM											
AUT	281	278	642	539	NS	<0.001	NS				
UK	719	680	1879	1887	NS	<0.001	NS				
FIN	1277	1216	2979	3040	NS	<0.001	NS				
Total intake, kg DM/d											
AUT (7 weeks)	15.9	15.5	18.2	16.6	NS	0.038	NS				
UK (9 weeks)	14.8	13.6	20.0	18.3	NS	<0.001	NS				
FIN (7 weeks)	16.8	17.2	18.4	17.5	NS	NS	NS				

ECM yield

Body weight

Pregnancy (%)

SOLID | Sustainable Organic and Low Input Dairying

Other traits

Health

- ♦ UK: Adapted breed lower incidences of mastitis & ovarian disorders
- FIN: Adapted breed less metabolic diseases & lameness in moderate feeding regime

Biomarkers (blood)

- AUT: Breeds reacted differently to concentrate reduction, i.e. different mobilization of body tissues
- UK: Adapted breed higher BOHB (no differences in NEFA), but higher glucose (energy status improved?)
- ♦ FIN: Adapted breed lower BOHB

Conclusions (1)

- Reduction in ECM yield due to reduction of concentrates differed between systems (583 to 1,725 kg)
- Adapted breeds mostly had higher milk solid content, which (partially) compensated for lower milk quantity
- No general trend could be observed across systems and breeds concerning body weight, BCS and their changes: Breed-specific response patterns to specific feeding system
- Inconsistent advantages for adapted breeds in fertility and certain health traits address key success factors for OLIS

Conclusions (2)

 Blood & milk biomarkers point at certain differences in breed response at the metabolic level

Few interactions between breed and feeding system

- ♦ Feeding system similarly challenging (AUT)
- Similar response of different breeds, i.e. breeds similarly suited
- Limitations of the current study, i.e. relatively low number of animals
- Breeding should address the specific production environment, considering traits most relevant to OLIS

Thank you

