

Future sustainability of organic and low-input milk production: Challenges and solutions Bristol, 26th Jan. 2016

Do existing feed rationing programmes suit high forage diets?

Werner Zollitsch¹, Lisa Baldinger²

¹BOKU-University of Natural Resources and Life Sciences (BOKU), Austria ²Thünen-Institute of Organic Farming, Germany

Introduction (1)

No general answer possible

Depends on the actual feeding programme used

- Any programmes available
- Differ substantially due to historical reasons: Different feed evaluation systems without scope for harmonisation
- ♦ Specific strengths and weaknesses

Background?

Organic & low input systems

Nutrient & energy density Bulky, quantity Ingestion time

Gut fill Gut mass Digestive activity Heat production

Energy for production Yield

Dong et al. (2015)

Energy requirements & high forage diets

J. Dairy Sci. 98:8846–8855 http://dx.doi.org/10.3168/jds.2015-9465 © American Dairy Science Association[®], 2015.

Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows

L. F. Dong,***†**‡ C. P. Ferris,* D. A. McDowell,**†** and T. Yan^{*1} *Agri-Food and Biosciences Institute, Hillsborough, Co. Down BT26 6DR, United Kingdom **†**Faculty of Life and Health Sciences, University of Ulster, Newtownabbey, Co. Antrim BT37 0QB, United Kingdom **‡**Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Energy requirements & high forage diets (Dong et al., 2015; contd.)

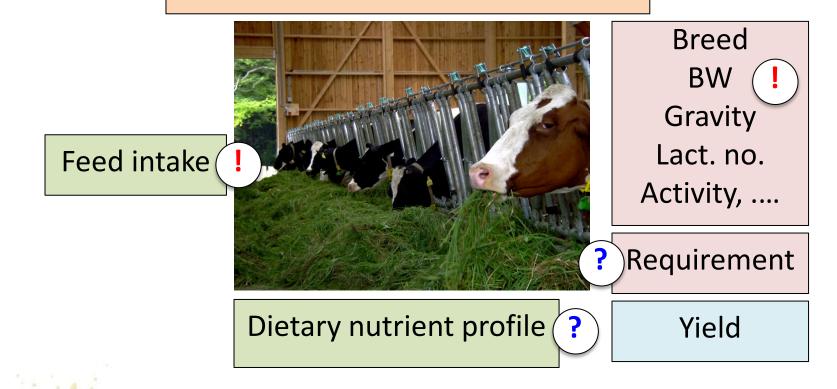
Conclusion:

Dairy cows managed under **low-input or organic** farming regimens may require **more feed energy for maintenance** than those reared in **high concentrate input** systems. Using the **current energy feeding systems** to ration dairy **cows** managed under **low-concentrate input systems** may **underestimate their nutrient requirement**.

Energy requirements & high forage diets (Dong et al., 2015; contd.)

Cows offered diets with forage proportions of 60 – 100 % would require approximately 11 % more energy for maintenance than those offered diets containing forage proportion of < 30 %.</p>

Trait	Forage proportion		Difference
	30 – 59 %	100 %	
ME _m , MJ/kg ^{0.75}	0.653	0.676	3.5 %
MEm, MJ/d (BW = 600 kg)	79.16	81.95	2.79 MJ = 3.5 %


2.79 MJ ≈ 0.57 kg milk

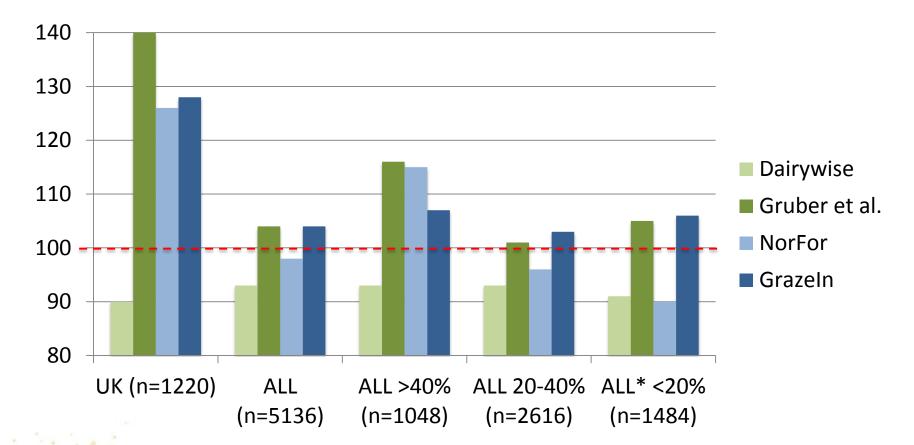
Conceptual framework ration programming

Environment incl. feeding system

Estimated feed intake: comparison of different models (Baldinger, 2014)

Dataset for SOLID DSS

- ♦ UK: AFBI, n=305, HF & Jersey x HF, moderate concentrate input (33.5 %)
- ♦ AUT: AREC, n=876, BS & specific HF strain, low concentrate input (23 %)
- ♦ FIN: Luke, n=144, Finn. Ayrshire & HF, high concentrate input (42 %)


Estimated feed intake

- ♦ DairyWise: NL
- ♦ Gruber et al.: DE & AUT
- ♦ NorFor: DK, IS, NO, SE
- ♦ Grazeln: F

Predicted DMI, % of actual DMI (Baldinger, 2014)

Conclusions

- There is no universal "best model" (rationing programme)
- Suitability of model depends on quality of input data ("rubbish in – rubbish out"!)
- For selecting an appropriate model, conditions under which the (empiric) model had been built need to be considered (advantage of models developed in the region?)
- Focus on precision of feed evaluation system (energy, protein) only will result in **biased assessment** of different rationing programmes

Suggested procedure (1)

- Take what you've got (model, rationing programme)
- Secure high quality input data (feed quality, body weight, expected yield & milk solids content,)
- Measure feed intake
- Compare estimates and real values for herd average or groups of cows (feed intake, yield, milk solids content,)

Suggested procedure (2)

 Use additional information to assess correctness of model (rationing programme)

- ♦ Milk protein & urea
- ♦ Faeces texture
- Body weight, body condition, backfat thickness
- ♦ Feeding behaviour

↔

- Estimate degree of variability within herd
 - Document consequences of dietary changes

Thank you

