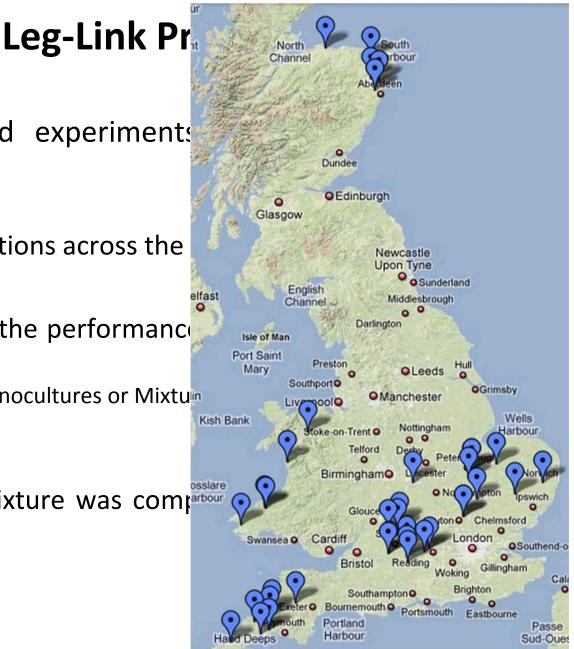
Organic Producers' Conference

Practical research and innovation - diversity in practice

Review of research on legumes and grasses for forage and grazing (Leg-Link /SOLID)

Konstantinos Zaralis Livestock Researcher **The Organic Research Centre**


Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems

- To demonstrate that:
 - species-rich legume-based leys can maximise pasture productivity and other ecosystem services
 - Functional diverse plant species mixtures can be optimised and fine-tuned to farm-specific needs

- Replicated field experiments three years
 - Multiple locations across the
 - Trials tested the performance species
 - Sown in monocultures or Mixtum
 - The study mixture was compared mixtures

- Conclusions and implications -

1. Characteristics of legume species used

- No single species scored high on all evaluation criteria
- Large degree of functional complementarity among the legume species.

 Table S3. Ranks of species performance (WP1); high ranks show high performance; empty cells indicate lack of sufficient data.

		_									(
Criterion	AC	BM	BT	CC	LT	LU	MP	RC	SC	SF	WC	WV
Early development	5	6	2	12	1	11	8	10	9	7	3	4
Productivity	7	9	8	6	1	10	3	12	4	5	11	2
Weed suppression	7	11	8	3	5	9	1	12	4	6	10	2
Flowering	6	11	8	8	2	2	1	6	2	2	8	1
Pre-crop value	5	8	10	3	7	12	2	11	4	6	9	1
Resistance to decomposition	5	4	9	1	10	3		7	6	8	2	
Perform. following crop	7	9	10	2	4	11	1	8	3	6	12	5
Average rank	6.0	8.3	7.9	5.0	4.3	8.3	2.7	9.4	4.6	5.7	7.9	2.5
Black Birdsfoot Medic Trefoil					•	Lucerne Red Clover				White Clover		

- Conclusions and implications -

2. Benefits of mixing species

- Increased above-ground biomass compared to monocultures
- Productivity increases over time
- Greater stability of biomass production
- Effects are more profound on less fertile soils (low organic matter)
- Mixing species with different properties allows better weed control throughout the season.

- Conclusions and implications -

2. Benefits of mixing species

- Greater resilience to variable weather, climate and management conditions
- Inclusion of species with slower N release can result in lower N losses and better utilisation
- Nitrogen losses from *White clover* and *Red clover* were 2–3 times greater than those from either *Black medic* or *Lucerne*

- Conclusions and implications -

3. Species with useful characteristics

- Mixes with high agronomic productivity function containing both *Lucerne* and *White Clover*
- Overall performance improves by including a third or fourth legume species
- The three best multifunctional mixtures all contained Black medic, Lucerne and Red clover
- Some species show low performance (almost) everywhere: *Meadow pea, Winter vetch, Large birdsfoot trefoil*

- Conclusions and implications -

3. Key points for designing a mixture

- Consider functional diversity rather than species diversity
- Criteria for species choice include
 - Residue properties
 - Biomass potential
 - Response to management, climate and soil conditions
 - Nutritional value for livestock
- Some species show marked differences in performance depending on region (i.e. Sainfoin)

Diverse swards and mob grazing for dairy farm productivity

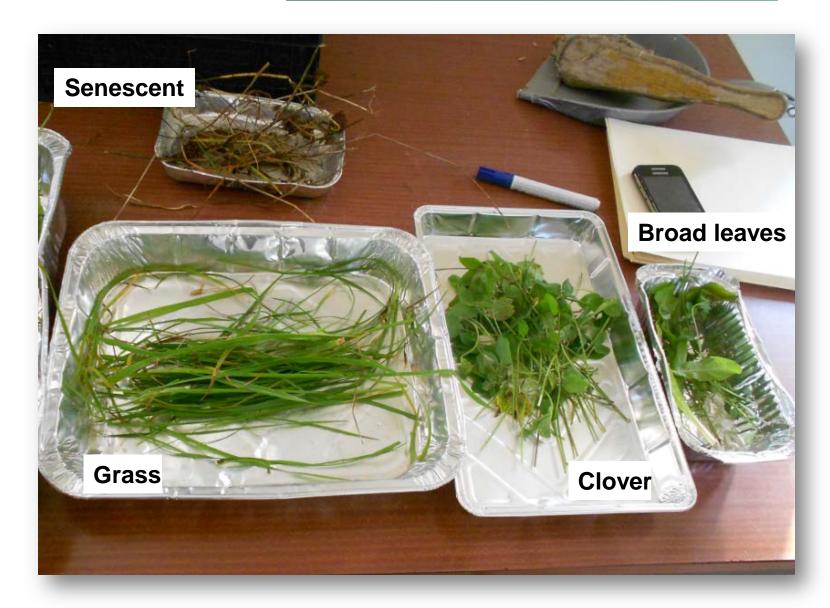
- To assess the productivity and composition of grazing diverse swards
- To compare diverse sward productivity with that of ryegrass-white clover

Measurements

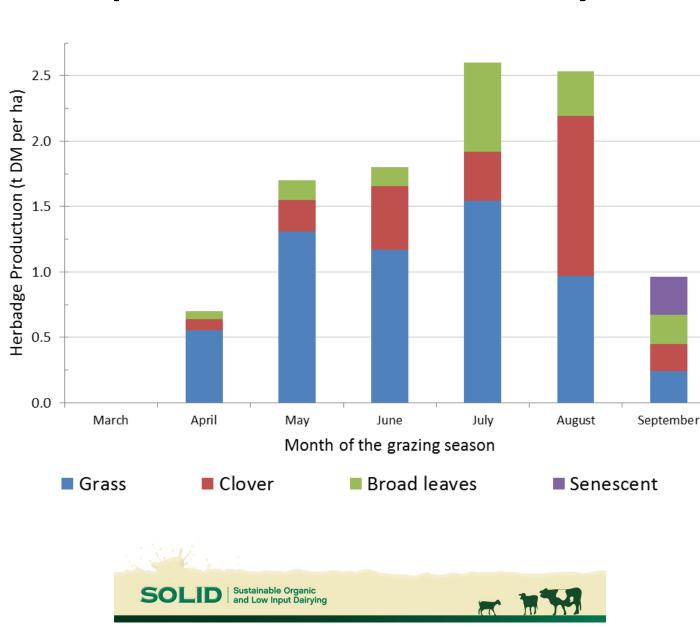
• Forage Productivity

Ungrazed paddock

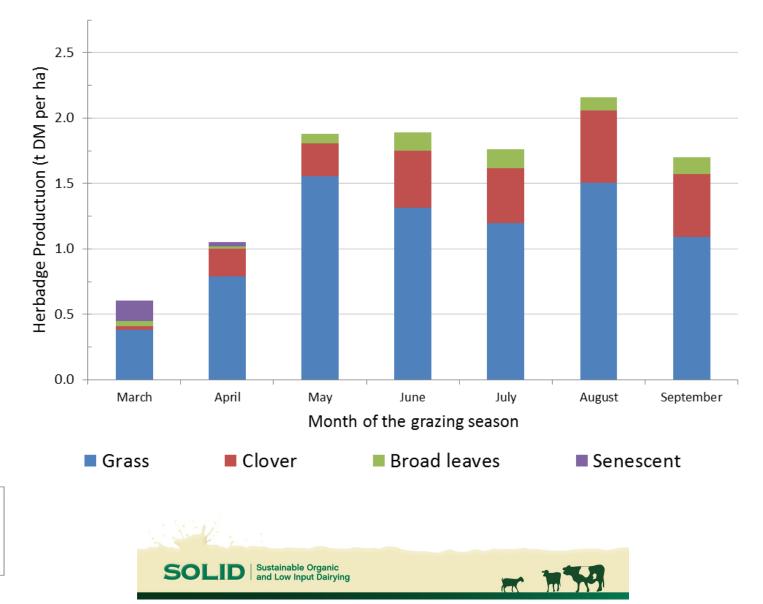
Grazed paddock


©RGANIC RESEARCH CENTRE

ELM FARM

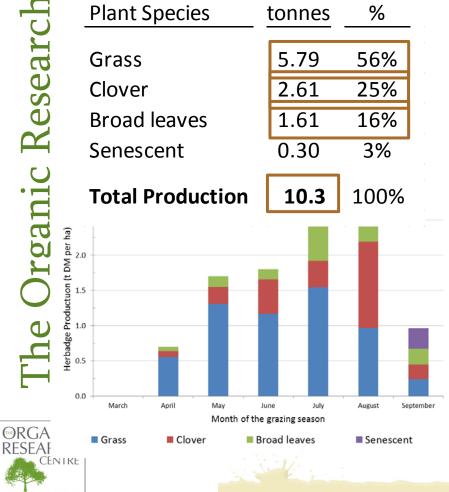

SOLID Project

SOLID | Sustainable Organic and Low Input Dairying

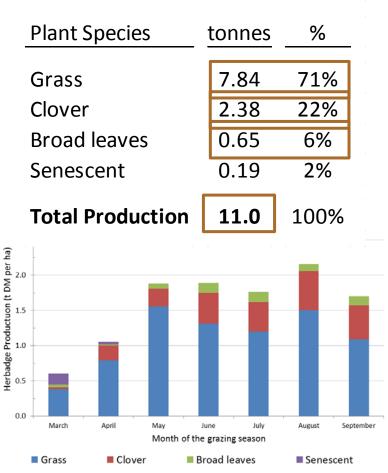

ELM FARM

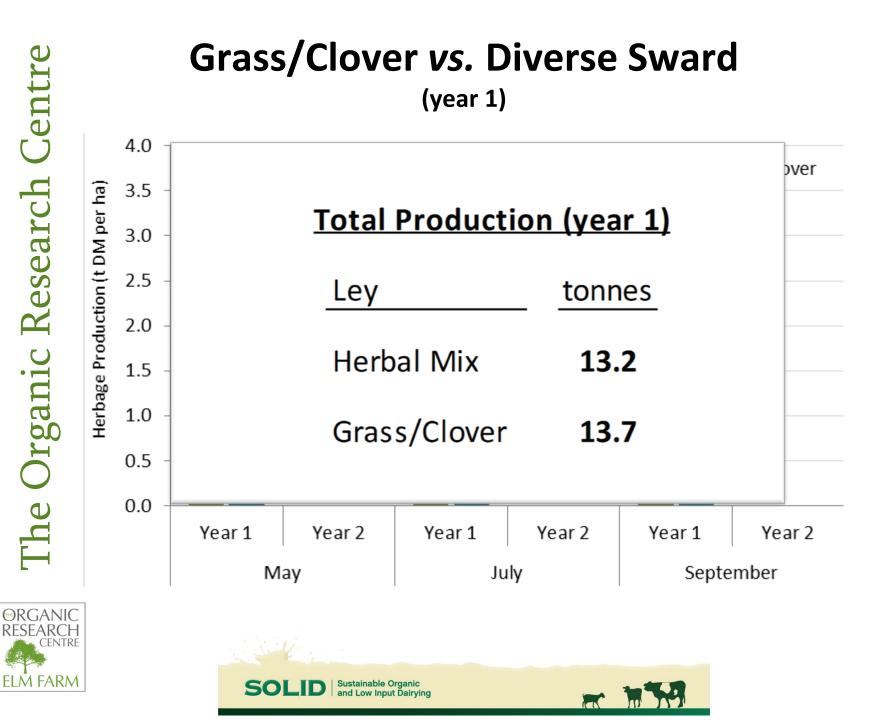
Composition & DM Productivity (year 1)

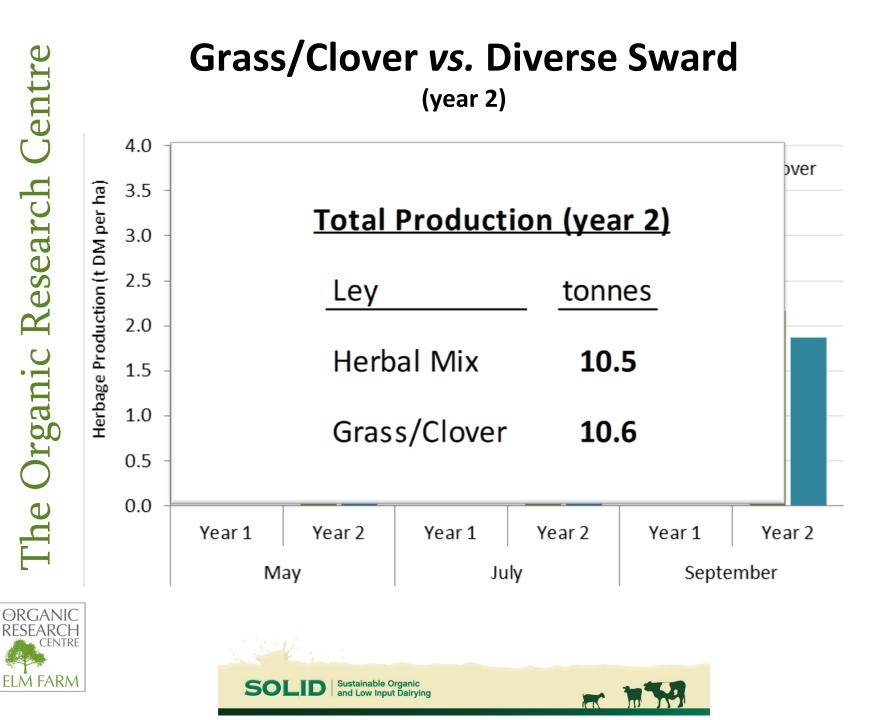
ELM FARM


Composition & DM Productivity (year 2)

ELM FARM


Forage DM Productivity


Total Production (year 1)

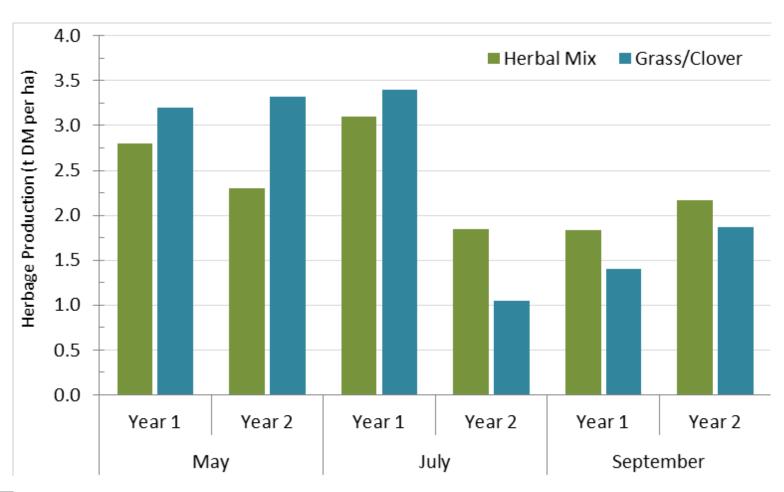


Sustainable Organic and Low Input Dairying

Total Production (year 2)

Conclusions

- There was a large variation in herbage composition between months and years of sampling
- No significant difference in DM yield was found between the two mixtures compared
- Diverse swards can serve as a viable alternative to traditional pastures
- Soil samples will be analysed later this year to determine Soil Organic Mater


The Organic Research Centre

Thank you

Results – Forage Production Y2

Table S1. Legume and grass species included in the trials: Scientific and common name; inoculation and seed rate (in kg/ha) in the monoculture plots (Monoc.) and in the All Species Mix (ASM).

				Seed rate	(kg/ha)
Abbreviation	Scientific name	Common name	Inoc.*	Monoc.	ASM
AC	Trifolium hybridum	Alsike clover	С	10	1.25
BT	Lotus corniculatus	Birdsfoot trefoil	-	12	2.5
BM	Medicago lupulina	Black medic	L	15	2.5
CC	Trifolium incarnatum	Crimson clover	-	18	2.25
IR	Lolium multiflorum	Italian ryegrass	-	33	1
LT	Lotus pedunculatus	Large birdsfoot trefoil	-	12	2.5
LU	Medicago sativa	Lucerne	L	20	2.5
MF	Festuca pratensis	Meadow fescue	-	25	1.25
MP	Lathyrus pratensis	Meadow pea	V	75	3.25
PR	Lolium perenne	Perennial ryegrass	-	33	2.5
RC	Trifolium pratense	Red clover	С	18	2.5
SF	Onobrychis viciifolia	Sainfoin	-	80	5
TY	Phleum pratense	Timothy	-	10	0.5
WC	Trifolium repens	White clover	С	10	1.5
SC	Melilotus alba	White sweet clover	L	18	-
WV	Vicia sativa	Winter vetch	V	100	-

* Inoculated with clover inoculant (C), lucerne inoculant (L) or vetch inoculant (V).

Mod grazing is characterised by **high grazing pressure for a short time** to remove forage rapidly as a management strategy

- Pastures are allowed to grow taller than the traditional height (i.e. long resting periods)
- Animals consume and trample the sward for a short period of time (i.e. are moved to a new paddock within 24h)

SOLID | Sustainable Organic and Low Input Dairying

- Conclusions and implications -

4. Species with useful characteristic

Red clover (Trifolium pratense)
 High yield
 High yield of subsequent crop

Performance 9.4

White clover (Trifolium repens)
 High yield
 High yield of subsequent crop

Performance 7.9

- Conclusions and implications -

4. Species with useful characteristics

 Black medic (Medicago lupulina) Resistance to decomposition (lignin content and C:N ratio) High yield of subsequent crop

Performance 8.3

 » Birdsfoot trefoil (Lotus corniculatus) High yield High yield of subsequent crop

Performance 7.9

- Conclusions and implications -

4. Species with useful characteristics

 » Lucerne (Medicago sativa) High yield Resistance to decomposition High yield of subsequent crop Prefers high pH

Performance 8.3

 Sainfoin (Onobrychis viciifolia) Moderate yield Resistance to decomposition

Performance 5.7

RGANIC RESEARCH

ELM FARM

Leg-Link Project

- Conclusions and implications -

4. Species with useful characteristics

 » Crimson clover (Trifolium incarnatum) High yield High value for pollinators

Performance 5.0

Diverse swards and mob grazing for dairy farm productivity

- Diverse swards consist of
 - o 10 grass species
 - o 6 legumes and
 - o **5 herbs**
- Mob grazing was introduced as an approach to increase Soil Organic Matter

- Conclusions and implications -

1. Characterisation of legume species

Table S3. Ranks of species performance (WP1); high ranks show high performance; empty cells indicate

lack of sufficient data.		Black Birdsfoot Medic Trefoil				Lucerne Red Clover			r	White Clover		
Criterion	AC	BM	BT	CC	LT	LU	MP	RC	SC	SF	WC	WV
Early development	5	6	2	12	1	11	8	10	9	7	3	4
Productivity	7	9	8	6	1	10	3	12	4	5	11	2
Weed suppression	7	11	8	3	5	9	1	12	4	6	10	2
Flowering	6	11	8	8	2	2	1	6	2	2	8	1
Pre-crop value	5	8	10	3	7	12	2	11	4	6	9	1
Resistance to decomposition	5	4	9	1	10	3		7	6	8	2	
Perform. following crop	7	9	10	2	4	11	1	8	3	6	12	5
Average rank	6.0	8.3	7.9	5.0	4.3	8.3	2.7	9.4	4.6	5.7	7.9	2.5

- ORGANIC RESEARCH CENTRE ELM FARM
- No single species scored high on all evaluation criteria
- Large degree of functional complementarity among the legume species.

- Conclusions and implications -

1. Characteristics of legume species used

- Range of currently used species in farms is relatively narrow:
 - White Clover / Red Clover
- Several other species show great potential to increase the productivity and provision of ecosystem services
 - Black medic, Birdsfoot trefoil, Crimson clover, Lucerne, Sainfoin

Measurements

- Forage Productivity
- Herbage composition
- Yield comparison Grass/Clover and Diverse Sward
- Evaluate the Plate Meter method for DM determination

